NAG Fortran Library

Chapter F06

Linear Algebra Support Routines

Chapter Introduction
F06AAF    Generate real plane rotation
F06BAF    Generate real plane rotation, storing tangent
F06BCF    Recover cosine and sine from given real tangent
F06BEF    Generate real Jacobi plane rotation
F06BHF    Apply real similarity rotation to 2 by 2 symmetric matrix
F06BLF    Compute quotient of two real scalars, with overflow flag
F06BMF    Compute Euclidean norm from scaled form
F06BNF    Compute square root of (a2 + b2), real a and b
F06BPF    Compute eigenvalue of 2 by 2 real symmetric matrix
F06CAF    Generate complex plane rotation, storing tangent, real cosine
F06CBF    Generate complex plane rotation, storing tangent, real sine
F06CCF    Recover cosine and sine from given complex tangent, real cosine
F06CDF    Recover cosine and sine from given complex tangent, real sine
F06CHF    Apply complex similarity rotation to 2 by 2 Hermitian matrix
F06CLF    Compute quotient of two complex scalars, with overflow flag
F06DBF    Broadcast scalar into integer vector
F06DFF    Copy integer vector
F06EAF    Dot product of two real vectors
F06ECF    Add scalar times real vector to real vector
F06EDF    Multiply real vector by scalar
F06EFF    Copy real vector
F06EGF    Swap two real vectors
F06EJF    Compute Euclidean norm of real vector
F06EKF    Sum absolute values of real vector elements
F06EPF    Apply real plane rotation
F06ERF    Dot product of two real sparse vectors
F06ETF    Add scalar times real sparse vector to real sparse vector
F06EUF    Gather real sparse vector
F06EVF    Gather and set to zero real sparse vector
F06EWF    Scatter real sparse vector
F06EXF    Apply plane rotation to two real sparse vectors
F06FAF    Compute cosine of angle between two real vectors
F06FBF    Broadcast scalar into real vector
F06FCF    Multiply real vector by diagonal matrix
F06FDF    Multiply real vector by scalar, preserving input vector
F06FGF    Negate real vector
F06FJF    Update Euclidean norm of real vector in scaled form
F06FKF    Compute weighted Euclidean norm of real vector
F06FLF    Elements of real vector with largest and smallest absolute value
F06FPF    Apply real symmetric plane rotation to two vectors
F06FQF    Generate sequence of real plane rotations
F06FRF    Generate real elementary reflection, NAG style
F06FSF    Generate real elementary reflection, LINPACK style
F06FTF    Apply real elementary reflection, NAG style
F06FUF    Apply real elementary reflection, LINPACK style
F06GAF    Dot product of two complex vectors, unconjugated
F06GBF    Dot product of two complex vectors, conjugated
F06GCF    Add scalar times complex vector to complex vector
F06GDF    Multiply complex vector by complex scalar
F06GFF    Copy complex vector
F06GGF    Swap two complex vectors
F06GRF    Dot product of two complex sparse vector, unconjugated
F06GSF    Dot product of two complex sparse vector, conjugated
F06GTF    Add scalar times complex sparse vector to complex sparse vector
F06GUF    Gather complex sparse vector
F06GVF    Gather and set to zero complex sparse vector
F06GWF    Scatter complex sparse vector
F06HBF    Broadcast scalar into complex vector
F06HCF    Multiply complex vector by complex diagonal matrix
F06HDF    Multiply complex vector by complex scalar, preserving input vector
F06HGF    Negate complex vector
F06HPF    Apply complex plane rotation
F06HQF    Generate sequence of complex plane rotations
F06HRF    Generate complex elementary reflection
F06HTF    Apply complex elementary reflection
F06JDF    Multiply complex vector by real scalar
F06JJF    Compute Euclidean norm of complex vector
F06JKF    Sum absolute values of complex vector elements
F06JLF    Index, real vector element with largest absolute value
F06JMF    Index, complex vector element with largest absolute value
F06KCF    Multiply complex vector by real diagonal matrix
F06KDF    Multiply complex vector by real scalar, preserving input vector
F06KFF    Copy real vector to complex vector
F06KJF    Update Euclidean norm of complex vector in scaled form
F06KLF    Last non-negligible element of real vector
F06KPF    Apply real plane rotation to two complex vectors
F06PAF    Matrix-vector product, real rectangular matrix
F06PBF    Matrix-vector product, real rectangular band matrix
F06PCF    Matrix-vector product, real symmetric matrix
F06PDF    Matrix-vector product, real symmetric band matrix
F06PEF    Matrix-vector product, real symmetric packed matrix
F06PFF    Matrix-vector product, real triangular matrix
F06PGF    Matrix-vector product, real triangular band matrix
F06PHF    Matrix-vector product, real triangular packed matrix
F06PJF    System of equations, real triangular matrix
F06PKF    System of equations, real triangular band matrix
F06PLF    System of equations, real triangular packed matrix
F06PMF    Rank-1 update, real rectangular matrix
F06PPF    Rank-1 update, real symmetric matrix
F06PQF    Rank-1 update, real symmetric packed matrix
F06PRF    Rank-2 update, real symmetric matrix
F06PSF    Rank-2 update, real symmetric packed matrix
F06QFF    Matrix copy, real rectangular or trapezoidal matrix
F06QHF    Matrix initialisation, real rectangular matrix
F06QJF    Permute rows or columns, real rectangular matrix, permutations represented by an integer array
F06QKF    Permute rows or columns, real rectangular matrix, permutations represented by a real array
F06QMF    Orthogonal similarity transformation of real symmetric matrix as a sequence of plane rotations
F06QPF    QR factorization by sequence of plane rotations, rank-1 update of real upper triangular matrix
F06QQF    QR factorization by sequence of plane rotations, real upper triangular matrix augmented by a full row
F06QRF    QR or RQ factorization by sequence of plane rotations, real upper Hessenberg matrix
F06QSF    QR or RQ factorization by sequence of plane rotations, real upper spiked matrix
F06QTF    QR factorization of UZ or RQ factorization of ZU, U real upper triangular, Z a sequence of plane rotations
F06QVF    Compute upper Hessenberg matrix by sequence of plane rotations, real upper triangular matrix
F06QWF    Compute upper spiked matrix by sequence of plane rotations, real upper triangular matrix
F06QXF    Apply sequence of plane rotations, real rectangular matrix
F06RAF    1-norm, -norm, Frobenius norm, largest absolute element, real general matrix
F06RBF    1-norm, -norm, Frobenius norm, largest absolute element, real band matrix
F06RCF    1-norm, -norm, Frobenius norm, largest absolute element, real symmetric matrix
F06RDF    1-norm, -norm, Frobenius norm, largest absolute element, real symmetric matrix, packed storage
F06REF    1-norm, -norm, Frobenius norm, largest absolute element, real symmetric band matrix
F06RJF    1-norm, -norm, Frobenius norm, largest absolute element, real trapezoidal/triangular matrix
F06RKF    1-norm, -norm, Frobenius norm, largest absolute element, real triangular matrix, packed storage
F06RLF    1-norm, -norm, Frobenius norm, largest absolute element, real triangular band matrix
F06RMF    1-norm, -norm, Frobenius norm, largest absolute element, real Hessenberg matrix
F06SAF    Matrix-vector product, complex rectangular matrix
F06SBF    Matrix-vector product, complex rectangular band matrix
F06SCF    Matrix-vector product, complex Hermitian matrix
F06SDF    Matrix-vector product, complex Hermitian band matrix
F06SEF    Matrix-vector product, complex Hermitian packed matrix
F06SFF    Matrix-vector product, complex triangular matrix
F06SGF    Matrix-vector product, complex triangular band matrix
F06SHF    Matrix-vector product, complex triangular packed matrix
F06SJF    System of equations, complex triangular matrix
F06SKF    System of equations, complex triangular band matrix
F06SLF    System of equations, complex triangular packed matrix
F06SMF    Rank-1 update, complex rectangular matrix, unconjugated vector
F06SNF    Rank-1 update, complex rectangular matrix, conjugated vector
F06SPF    Rank-1 update, complex Hermitian matrix
F06SQF    Rank-1 update, complex Hermitian packed matrix
F06SRF    Rank-2 update, complex Hermitian matrix
F06SSF    Rank-2 update, complex Hermitian packed matrix
F06TFF    Matrix copy, complex rectangular or trapezoidal matrix
F06THF    Matrix initialisation, complex rectangular matrix
F06TMF    Unitary similarity transformation of Hermitian matrix as a sequence of plane rotations
F06TPF    QR factorization by sequence of plane rotations, rank-1 update of complex upper triangular matrix
F06TQF    QR × k factorization by sequence of plane rotations, complex upper triangular matrix augmented by a full row
F06TRF    QR or RQ factorization by sequence of plane rotations, complex upper Hessenberg matrix
F06TSF    QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix
F06TTF    QR factorization of UZ or RQ factorization of ZU, U complex upper triangular, Z a sequence of plane rotations
F06TVF    Compute upper Hessenberg matrix by sequence of plane rotations, complex upper triangular matrix
F06TWF    Compute upper spiked matrix by sequence of plane rotations, complex upper triangular matrix
F06TXF    Apply sequence of plane rotations, complex rectangular matrix, real cosine and complex sine
F06TYF    Apply sequence of plane rotations, complex rectangular matrix, complex cosine and real sine
F06UAF    1-norm, -norm, Frobenius norm, largest absolute element, complex general matrix
F06UBF    1-norm, -norm, Frobenius norm, largest absolute element, complex band matrix
F06UCF    1-norm, -norm, Frobenius norm, largest absolute element, complex Hermitian matrix
F06UDF    1-norm, -norm, Frobenius norm, largest absolute element, complex Hermitian matrix, packed storage
F06UEF    1-norm, -norm, Frobenius norm, largest absolute element, complex Hermitian band matrix
F06UFF    1-norm, -norm, Frobenius norm, largest absolute element, complex symmetric matrix
F06UGF    1-norm, -norm, Frobenius norm, largest absolute element, complex symmetric matrix, packed storage
F06UHF    1-norm, -norm, Frobenius norm, largest absolute element, complex symmetric band matrix
F06UJF    1-norm, -norm, Frobenius norm, largest absolute element, complex trapezoidal/triangular matrix
F06UKF    1-norm, -norm, Frobenius norm, largest absolute element, complex triangular matrix, packed storage
F06ULF    1-norm, -norm, Frobenius norm, largest absolute element, complex triangular band matrix
F06UMF    1-norm, -norm, Frobenius norm, largest absolute element, complex Hessenberg matrix
F06VJF    Permute rows or columns, complex rectangular matrix, permutations represented by an integer array
F06VKF    Permute rows or columns, complex rectangular matrix, permutations represented by a real array
F06VXF    Apply sequence of plane rotations, complex rectangular matrix, real cosine and sine
F06YAF    Matrix-matrix product, two real rectangular matrices
F06YCF    Matrix-matrix product, one real symmetric matrix, one real rectangular matrix
F06YFF    Matrix-matrix product, one real triangular matrix, one real rectangular matrix
F06YJF    Solves system of equations with multiple right-hand sides, real triangular coefficient matrix
F06YPF    Rank-k update of real symmetric matrix
F06YRF    Rank-2k update of real symmetric matrix
F06ZAF    Matrix-matrix product, two complex rectangular matrices
F06ZCF    Matrix-matrix product, one complex Hermitian matrix, one complex rectangular matrix
F06ZFF    Matrix-matrix product, one complex triangular matrix, one complex rectangular matrix
F06ZJF    Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix
F06ZPF    Rank-k update of complex Hermitian matrix
F06ZRF    Rank-2k update of complex Hermitian matrix
F06ZTF    Matrix-matrix product, one complex symmetric matrix, one complex rectangular matrix
F06ZUF    Rank-k update of complex symmetric matrix
F06ZWF    Rank-2k update of complex symmetric matrix

Table of contents top
Previous (A00)
Next (F07)

© The Numerical Algorithms Group Ltd, Oxford UK. 2001