C06GSF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

C06GSF takes m Hermitian sequences, each containing n data values, and forms the real and imaginary parts of the m corresponding complex sequences.

2 Specification

SUBROUTINE COGGSF(M, N, X, U, V, IFAIL)

INTEGER M, N, IFAIL

real X(M*N), U(M*N), V(M*N)

3 Description

This is a utility routine for use in conjunction with C06FPF and C06FQF (see the Chapter Introduction).

4 References

None.

5 Parameters

1: M — INTEGER

On entry: the number of Hermitian sequences, m, to be converted into complex form.

Constraint: $M \ge 1$.

2: N — INTEGER Input

On entry: the number of data values, n, in each sequence.

Constraint: $N \ge 1$.

3: X(M*N) - real array

On entry: the data must be stored in X as if in a two-dimensional array of dimension (1:M,0:N-1); each of the m sequences is stored in a **row** of the array in Hermitian form. If the n data values z_j^p are written as $x_j^p + iy_j^p$, then for $0 \le j \le n/2$, x_j^p is contained in X(p, j), and for $1 \le j \le (n-1)/2$, y_j^p is contained in X(p, n-j). (See also Section 2.1.2 of the Chapter Introduction.)

4: U(M*N) — real array

5: V(M*N) — real array

Output

On exit: the real and imaginary parts of the m sequences of length n, are stored in U and V respectively, as if in two-dimensional arrays of dimension (1:M,0:N-1); each of the m sequences is stored as if in a **row** of each array. In other words, if the real parts of the pth sequence are denoted

by x_i^p , for $j=0,1,\ldots,n-1$ then the mn elements of the array U contain the values

$$x_0^1, x_0^2, \dots, x_0^m, x_1^1, x_1^2, \dots, x_1^m, \dots, x_{n-1}^1, x_{n-1}^2, \dots, x_{n-1}^m$$

6: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

[NP3390/19/pdf] C06GSF.1

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

```
\begin{split} \text{IFAIL} &= 1 \\ &\quad \text{On entry}, \ \ M < 1. \\ \\ \text{IFAIL} &= 2 \\ &\quad \text{On entry}, \ \ N < 1. \end{split}
```

7 Accuracy

Exact.

8 Further Comments

None.

9 Example

This program reads in sequences of real data values which are assumed to be Hermitian sequences of complex data stored in Hermitian form. The sequences are then expanded into full complex form using C06GSF and printed.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
CO6GSF Example Program Text
  Mark 14 Revised. NAG Copyright 1989.
   .. Parameters ..
   INTEGER
                    MMAX, NMAX
  PARAMETER
                    (MMAX=5,NMAX=20)
  INTEGER
                    NIN, NOUT
                    (NIN=5, NOUT=6)
  PARAMETER
   .. Local Scalars ..
   INTEGER
                    I, IFAIL, J, M, N
   .. Local Arrays ..
  real
                    U(MMAX*NMAX), V(MMAX*NMAX), X(MMAX*NMAX)
   .. External Subroutines ..
   EXTERNAL
                    C06GSF
   .. Executable Statements ..
   WRITE (NOUT,*) 'CO6GSF Example Program Results'
   Skip heading in data file
   READ (NIN,*)
20 READ (NIN, *, END=100) M, N
   IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
      DO 40 J = 1, M
         READ (NIN,*) (X(I*M+J),I=0,N-1)
40
      CONTINUE
      WRITE (NOUT,*)
      WRITE (NOUT,*) 'Original data values'
```

C06GSF.2 [NP3390/19/pdf]

```
WRITE (NOUT,*)
        DO 60 J = 1, M
            WRITE (NOUT,99999) ' ', (X(I*M+J),I=0,N-1)
   60
        CONTINUE
        WRITE (NOUT,*)
        WRITE (NOUT,*) 'Original data written in full complex form'
        IFAIL = 0
        CALL CO6GSF(M,N,X,U,V,IFAIL)
        DO 80 J = 1, M
            WRITE (NOUT,*)
            WRITE (NOUT,99999) 'Real ', (U(I*M+J),I=0,N-1)
            WRITE (NOUT,99999) 'Imag ', (V(I*M+J),I=0,N-1)
  80
        CONTINUE
        GO TO 20
     ELSE
        WRITE (NOUT,*) 'Invalid value of M or N'
     END IF
  100 STOP
99999 FORMAT (1X,A,6F10.4)
     END
```

9.2 Program Data

C06GSF Example Program Data
3 6
0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
0.5417 0.2983 0.1181 0.7255 0.8638 0.8723
0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

9.3 Program Results

CO6GSF Example Program Results

Original data values

0.3854	0.6772	0.1138	0.6751	0.6362	0.1424
0.5417	0.2983	0.1181	0.7255	0.8638	0.8723
0.9172	0.0644	0.6037	0.6430	0.0428	0.4815

Original data written in full complex form $% \left(1\right) =\left(1\right) \left(1\right) \left($

Real	0.3854	0.6772	0.1138	0.6751	0.1138	0.6772
Imag	0.0000	0.1424	0.6362	0.0000	-0.6362	-0.1424
Real	0.5417	0.2983	0.1181	0.7255	0.1181	0.2983
Imag	0.0000	0.8723	0.8638	0.0000	-0.8638	-0.8723
Real	0.9172	0.0644	0.6037	0.6430	0.6037	0.0644
Imag	0.0000	0.4815	0.0428	0.0000	-0.0428	-0.4815

[NP3390/19/pdf] C06GSF.3 (last)