
D02 – Ordinary Differential Equations

D02HBF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D02HBF solves the two-point boundary-value problem for a system of ordinary differential equations,
using initial value techniques and Newton iteration; it generalises subroutine D02HAF to include the case
where parameters other than boundary values are to be determined.

2 Specification

SUBROUTINE D02HBF(P, N1, PE, E, N, SOLN, M1, FCN, BC, RANGE, W,
1 IW, IFAIL)
INTEGER N1, N, M1, IW, IFAIL
real P(N1), PE(N1), E(N), SOLN(N,M1), W(N,IW)
EXTERNAL FCN, BC, RANGE

3 Description

D02HBF solves the two-point boundary-value problem by determining the unknown parameters
p1, p2, . . . , pn1

of the problem. These parameters may be, but need not be, boundary values; they
may include eigenvalue parameters in the coefficients of the differential equations, length of the range of
integration, etc. The notation and methods used are similar to those of D02HAF and the user is advised to
study this first. (The parameters p1, p2, . . . , pn1

correspond precisely to the unknown boundary conditions
in D02HAF.) It is assumed that we have a system of n first-order ordinary differential equations of the
form:

dyi

dx
= fi(x, y1, y2, . . . , yn), i = 1, 2, . . . , n,

and that the derivatives fi are evaluated by a subroutine FCN supplied by the user. The system, including
the boundary conditions given by BC and the range of integration given by RANGE, involves the n1

unknown parameters p1, p2, . . . , pn1
which are to be determined, and for which initial estimates must be

supplied. The number of unknown parameters n1 must not exceed the number of equations n. If n1 < n,
we assume that (n − n1) equations of the system are not involved in the matching process. These are
usually referred to as ‘driving equations’; they are independent of the parameters and of the solutions of
the other n1 equations. In numbering the equations for the subroutine FCN, the driving equations must
be put first.

The estimated values of the parameters are corrected by a form of Newton iteration. The Newton
correction on each iteration is calculated using a Jacobian matrix whose (i, j)th element depends on the
derivative of the ith component of the solution, yi, with respect to the jth parameter, pj . This matrix is
calculated by a simple numerical differentiation technique which requires n1 evaluations of the differential
system.

If the parameter IFAIL is set appropriately, the routine automatically prints messages to inform the user
of the flow of the calculation. These messages are discussed in detail in Section 8.

D02HBF is a simplified version of D02SAF which is described in detail in Gladwell [1].

4 References

[1] Gladwell I (1979) The development of the boundary value codes in the ordinary differential equations
chapter of the NAG Library Codes for Boundary Value Problems in Ordinary Differential Equations.
Lecture Notes in Computer Science (ed B Childs, M Scott, J W Daniel, E Denman and P Nelson)
76 Springer-Verlag

[NP3390/19/pdf] D02HBF.1

D02HBF D02 – Ordinary Differential Equations

5 Parameters

Users are strongly recommended to read Section 3 and Section 8 in conjunction with this section.

1: P(N1) — real array Input/Output

On entry: an estimate for the ith parameter, pi, for i = 1, 2, . . . , n1.

On exit: the corrected value for the ith parameter, unless an error has occurred, when it contains
the last calculated value of the parameter.

2: N1 — INTEGER Input

On entry: the number of parameters, n1.

Constraint: 1 ≤ N1 ≤ N.

3: PE(N1) — real array Input

On entry: the elements of PE must be given small positive values. The element PE(i) is used

(i) in the convergence test on the ith parameter in the Newton iteration, and
(ii) in perturbing the ith parameter when approximating the derivatives of the components of the

solution with respect to this parameter for use in the Newton iteration.

The elements PE(i) should not be chosen too small. They should usually be several orders of
magnitude larger than machine precision.

Constraint: PE(i) > 0.0, for i = 1, 2, . . . ,N1.

4: E(N) — real array Input

On entry: the elements of E must be given positive values.The element E(i) is used in the bound
on the local error in the ith component of the solution yi during integration.

The elements E(i) should not be chosen too small. They should usually be several orders of
magnitude larger than machine precision.

Constraint: E(i) > 0.0, for i = 1, 2, . . . ,N.

5: N — INTEGER Input

On entry: the total number of differential equations, n.

Constraint: N ≥ 2.

6: SOLN(N,M1) — real array Output

On exit: the solution when M1 > 1 (see below).

7: M1 — INTEGER Input

On entry: a value which controls exit values as follows:

M1 = 1

The final solution is not calculated;

M1 > 1

The final values of the solution at interval (length of range)/(M1−1) are calculated and stored
sequentially in the array SOLN starting with the values of the solutions evaluated at the first
end-point (see subroutine RANGE below) stored in the first column of SOLN.

Constraint: M1 ≥ 1.

D02HBF.2 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02HBF

8: FCN — SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the function fi (i.e., the derivative y′
i), for i = 1, 2, . . . , n.

Its specification is:

SUBROUTINE FCN(X, Y, F, P)
real X, Y(n), F(n), P(n1)

where n and n1 are the actual values of N and N1 in the call of D02HBF.

1: X — real Input
On entry: the value of the argument x.

2: Y(n) — real array Input
On entry: the value of the argument yi, for i = 1, 2, . . . , n.

3: F(n) — real array Output
On exit: the value of fi, for i = 1, 2, . . . , n. The fi may depend upon the parameters pj, for
j = 1, 2, . . . , n1. If there are any driving equations (see Section 3) then these must be numbered
first in the ordering of the components of F in FCN.

4: P(n1) — real array Input
On entry: the current estimate of the parameter pi, for i = 1, 2, . . . , n1.

FCN must be declared as EXTERNAL in the (sub)program from which D02HBF is called.
Parameters denoted as Input must not be changed by this procedure.

9: BC — SUBROUTINE, supplied by the user. External Procedure

BC must place in G1 and G2 the boundary conditions at a and b respectively (see RANGE below).

Its specification is:

SUBROUTINE BC(G1, G2, P)
real G1(n), G2(n), P(n1)

where n and n1 are the actual values of N and N1 in the call of D02HBF.

1: G1(n) — real array Output
On exit: the value of yi(a), (where this may be a known value or a function of the parameters
pj , for j = 1, 2, . . . , n1); i = 1, 2, . . . , n.

2: G2(n) — real array Output
On exit: the value of yi(b), for i = 1, 2, . . . , n, (where these may be known values or functions
of the parameters pj , for j = 1, 2, . . . , n1). If n > n1, so that there are some driving equations,
then the first n − n1 values of G2 need not be set since they are never used.

3: P(n1) — real array Input
On entry: an estimate of the parameter pi, for i = 1, 2, . . . , n1.

BC must be declared as EXTERNAL in the (sub)program from which D02HBF is called. Parameters
denoted as Input must not be changed by this procedure.

[NP3390/19/pdf] D02HBF.3

D02HBF D02 – Ordinary Differential Equations

10: RANGE — SUBROUTINE, supplied by the user. External Procedure

RANGE must evaluate the boundary points a and b, each of which may depend on the parameters
p1, p2, . . . , pn1

. The integrations in the shooting method are always from a to b.

Its specification is:

SUBROUTINE RANGE(A, B, P)
real A, B, P(n1)

where n1 is the actual value of N1 in the call of D02HBF.

1: A — real Output
On exit: one of the boundary points, a.

2: B — real Output
On exit: the second boundary point, b. Note that B > A forces the direction of integration to
be that of increasing X. If A and B are interchanged the direction of integration is reversed.

3: P(n1) — real array Input
On entry: the current estimate of the ith parameter, pi, for i = 1, 2, . . . , n1.

RANGE must be declared as EXTERNAL in the (sub)program from which D02HBF is called.
Parameters denoted as Input must not be changed by this procedure.

11: W(N,IW) — real array Output

Used mainly for workspace.

On exit: with IFAIL = 2, 3, 4 or 5 (see Section 6), W(i, 1), for i = 1, 2, . . . , n contains the solution
at the point x when the error occurred. W(1,2) contains x.

12: IW — INTEGER Input

On entry: the second dimension of the arrayW as declared in the (sub)program from which D02HBF
is called.

Constraint: IW ≥ 3N + 14 + max(11,N).

13: IFAIL — INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Chapter P01).

Before entry, IFAIL must be set to a value with the decimal expansion cba, where each of the decimal
digits c, b and a must have a value of 0 or 1.

a = 0 specifies hard failure, otherwise soft failure;
b = 0 suppresses error messages, otherwise error messages will be printed (see Section 6);
c = 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).

Unless the routine detects an error (see Section 6), IFAIL contains 0 on exit.

6 Error Indicators and Warnings

For each error, an explanatory error message is output on the current error message unit (as defined by
X04AAF), unless suppressed by the value of IFAIL on entry.

Errors detected by the routine:

D02HBF.4 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02HBF

IFAIL = 1

One or more of the parameters N, N1, M1, IW, E or PE is incorrectly set.

IFAIL = 2

The step length for the integration became too short whilst calculating the residual (see Section
8).

IFAIL = 3

No initial step length could be chosen for the integration whilst calculating the residual.

Note: IFAIL = 2 or 3 can occur due to choosing too small a value for E or due to choosing the
wrong direction of integration. Try varying E and interchanging a and b. These error exits can
also occur for very poor initial choices of the parameters in the array P and, in extreme cases,
because this routine cannot be used to solve the problem posed.

IFAIL = 4

As for IFAIL = 2 but the error occurred when calculating the Jacobian.

IFAIL = 5

As for IFAIL = 3 but the error occurred when calculating the Jacobian.

IFAIL = 6

The calculated Jacobian has an insignificant column. This can occur because a parameter pi is
incorrectly entered when posing the problem.

Note: IFAIL = 4, 5 or 6 usually indicate a badly scaled problem. The user may vary the size of PE.
Otherwise the use of the more general D02SAF which affords more control over the calculations is
advised.

IFAIL = 7

The linear algebra routine used (F02WEF) has failed. This error exit should not occur and can
be avoided by changing the initial estimates pi.

IFAIL = 8

The Newton iteration has failed to converge. This can indicate a poor initial choice of parameters
pi or a very difficult problem. Consider varying the elements PE(i) if the residuals are small in
the monitoring output. If the residuals are large, try varying the initial parameters pi.

IFAIL = 9, 10, 11, 12 or 13

Indicate that a serious error has occurred in D02SAZ, D02SAW, D02SAX, D02SAU or D02SAV
respectively. Check all array subscripts and subroutine parameter lists in the call to D02HBF.
Seek expert help.

7 Accuracy

If the process converges, the accuracy to which the unknown parameters are determined is usually close
to that specified by the user; and the solution, if requested, may be determined to a required accuracy
by varying the parameter E.

8 Further Comments

The time taken by the routine depends on the complexity of the system, and on the number of iterations
required. In practice, integration of the differential equations is by far the most costly process involved.

Wherever they occur in the routine, the error parameters contained in the arrays E and PE are used in
‘mixed’ form; that is E(i) always occurs in expressions of the form

E(i)× (1 + |yi|)

[NP3390/19/pdf] D02HBF.5

D02HBF D02 – Ordinary Differential Equations

and PE(i) always occurs in expressions of the form

PE(i)× (1 + |pi|)

Though not ideal for every application, it is expected that this mixture of absolute and relative error
testing will be adequate for most purposes.

The user may determine a suitable direction of integration a to b and suitable values for E(i) by
integrations with D02PCF. The best direction of integration is usually the direction of decreasing
solutions. The user is strongly recommended to set IFAIL to obtain self-explanatory error messages,
and also monitoring information about the course of the computation. The user may select the channel
numbers on which this output is to appear by calls of X04AAF (for error messages) or X04ABF (for
monitoring information) – see Section 9 for an example. Otherwise the default channel numbers will
be used, as specified in the implementation document. The monitoring information produced at each
iteration includes the current parameter values, the residuals and two norms: a basic norm and a current
norm. At each iteration the aim is to find parameter values which make the current norm less than the
basic norm. Both these norms should tend to zero as should the residuals. (They would all be zero if
the exact parameters were used as input.) For more details, in particular about the other monitoring
information printed, the user is advised to consult the specification of D02SAF and, especially, the
description of the parameter MONIT there.

The computing time for integrating the differential equations can sometimes depend critically on the
quality of the initial estimates for the parameters pi. If it seems that too much computing time is
required and, in particular, if the values of the residuals printed by the monitoring routine are much
larger than the expected values of the solution at b then the coding of the subroutines FCN, BC and
RANGE should be checked for errors. If no errors can be found, an independent attempt should be made
to improve the initial estimates for pi.

The subroutine can be used to solve a very wide range of problems, for example:

(a) eigenvalue problems, including problems where the eigenvalue occurs in the boundary conditions;

(b) problems where the differential equations depend on some parameters which are to be determined
so as to satisfy certain boundary conditions (see example (ii) in Section 9);

(c) problems where one of the end-points of the range of integration is to be determined as the point
where a variable yi takes a particular value (see example (ii) in Section 9);

(d) singular problems and problems on infinite ranges of integration where the values of the solution at
a or b or both are determined by a power series or an asymptotic expansion (or a more complicated
expression) and where some of the coefficients in the expression are to be determined (see example
(i) in Section 9); and

(e) differential equations with certain terms defined by other independent (driving) differential
equations.

9 Example

For this routine two examples are presented, in Section 9.1 and Section 9.2. In the example programs
distributed to sites, there is a single example program for D02HBF, with a main program:

* D02HBF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. External Subroutines ..
EXTERNAL EX1, EX2

* .. Executable Statements ..
WRITE (NOUT,*) ’D02HBF Example Program Results’
CALL EX1
CALL EX2
STOP
END

D02HBF.6 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02HBF

The code to solve the two example problems is given in the subroutines EX1 and EX2, in Section 9.1.1
and Section 9.2.1 respectively.

9.1 Example 1

To find the solution of the differential equation

y′′ = (y3 − y′)/2x

on the range 0 ≤ x ≤ 16, with boundary conditions y(0) = 0.1 and y(16) = 1/6. We cannot use the
differential equation at x = 0 because it is singular, so we take a truncated power series expansion

y(x) = 1/10 + p1 ×
√

x/10 + x/100

near the origin where p1 is one of the parameters to be determined. We choose the interval as [0.1,16]
and setting p2 = y′(16), we can determine all the boundary conditions. We take X1 = 16. We write y
= Y(1), y′ = Y(2), and estimate PARAM(1) = 0.2, PARAM(2) = 0.0. Note the call to X04ABF before
the call to D02HBF.

9.1.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

*
SUBROUTINE EX1

* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N, N1, IW, M1
PARAMETER (N=2,N1=2,IW=3*N+14+11,M1=6)

* .. Local Scalars ..
real H, X, X1
INTEGER I, IFAIL, J

* .. Local Arrays ..
real C(N,M1), ERROR(N), PARAM(N1), PARERR(N1), W(N,IW)

* .. External Subroutines ..
EXTERNAL AUX1, BCAUX1, D02HBF, RNAUX1, X04ABF

* .. Intrinsic Functions ..
INTRINSIC real

* .. Executable Statements ..
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 1’
CALL X04ABF(1,NOUT)
PARAM(1) = 0.2e0
PARAM(2) = 0.0e0
PARERR(1) = 1.0e-5
PARERR(2) = 1.0e-3
ERROR(1) = 1.0e-4
ERROR(2) = 1.0e-4

* * Set IFAIL to 111 to obtain monitoring information *
IFAIL = 11

*
CALL D02HBF(PARAM,N1,PARERR,ERROR,N,C,M1,AUX1,BCAUX1,RNAUX1,W,IW,

+ IFAIL)
*

WRITE (NOUT,*)
IF (IFAIL.NE.0) THEN

[NP3390/19/pdf] D02HBF.7

D02HBF D02 – Ordinary Differential Equations

WRITE (NOUT,99999) ’IFAIL = ’, IFAIL
IF (IFAIL.LE.5 .AND. IFAIL.NE.1) THEN

WRITE (NOUT,*)
WRITE (NOUT,99996) ’W(1,2) = ’, W(1,2), ’ W(.,1) = ’,

+ (W(I,1),I=1,N)
END IF

ELSE
WRITE (NOUT,*) ’Final parameters’
WRITE (NOUT,99998) (PARAM(I),I=1,N1)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Final solution’
WRITE (NOUT,*) ’X-value Components of solution’
CALL RNAUX1(X,X1,PARAM)
H = (X1-X)/real(M1-1)
DO 20 I = 1, M1

WRITE (NOUT,99997) X + (I-1)*H, (C(J,I),J=1,N)
20 CONTINUE

END IF
RETURN

*
99999 FORMAT (1X,A,I3)
99998 FORMAT (1X,1P,3e15.3)
99997 FORMAT (1X,F7.2,2F13.4)
99996 FORMAT (1X,A,F9.4,A,10e10.3)

END
*

SUBROUTINE AUX1(X,Y,F,PARAM)
* .. Parameters ..

INTEGER N
PARAMETER (N=2)

* .. Scalar Arguments ..
real X

* .. Array Arguments ..
real F(N), PARAM(N), Y(N)

* .. Executable Statements ..
F(1) = Y(2)
F(2) = (Y(1)**3-Y(2))/(2.0e0*X)
RETURN
END

*
SUBROUTINE RNAUX1(X,X1,PARAM)

* .. Scalar Arguments ..
real X, X1

* .. Array Arguments ..
real PARAM(2)

* .. Executable Statements ..
X = 0.1e0
X1 = 16.0e0
RETURN
END

*
SUBROUTINE BCAUX1(G,G1,PARAM)

* .. Parameters ..
INTEGER N
PARAMETER (N=2)

* .. Array Arguments ..
real G(N), G1(N), PARAM(N)

D02HBF.8 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02HBF

* .. Local Scalars ..
real Z

* .. Intrinsic Functions ..
INTRINSIC SQRT

* .. Executable Statements ..
Z = 0.1e0
G(1) = 0.1e0 + PARAM(1)*SQRT(Z)*0.1e0 + 0.01e0*Z
G(2) = PARAM(1)*0.05e0/SQRT(Z) + 0.01e0
G1(1) = 1.0e0/6.0e0
G1(2) = PARAM(2)
RETURN
END

9.1.2 Program Data

None.

9.1.3 Program Results

D02HBF Example Program Results

Case 1

Final parameters
4.629E-02 3.494E-03

Final solution
X-value Components of solution

0.10 0.1025 0.0173
3.28 0.1217 0.0042
6.46 0.1338 0.0036
9.64 0.1449 0.0034

12.82 0.1557 0.0034
16.00 0.1667 0.0035

9.2 Example 2

To find the gravitational constant p1 and the range p2 over which a projectile must be fired to hit the
target with a given velocity.

The differential equations are

y′ = tanφ

v′ =
−(p1 sinφ+ 0.00002v2)

v cosφ

φ′ =
−p1

v2

on the range 0 < x < p2, with boundary conditions

y = 0, v = 500, φ = 0.5 at x = 0,
y = 0, v = 450, φ = p3 at x = p2

.

We write y = Y(1), v = Y(2), φ = Y(3). We estimate p1 = PARAM(1) = 32, p2 = PARAM(2) = 6000
and p3 = PARAM(3) = 0.54 (though this last estimate is not important).

[NP3390/19/pdf] D02HBF.9

D02HBF D02 – Ordinary Differential Equations

9.2.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

*
SUBROUTINE EX2

* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N, N1, IW, M1
PARAMETER (N=3,N1=3,IW=3*N+14+11,M1=6)

* .. Local Scalars ..
real H, X, X1
INTEGER I, IFAIL, J

* .. Local Arrays ..
real C(N,M1), ERROR(N), PARAM(N1), PARERR(N1), W(N,IW)

* .. External Subroutines ..
EXTERNAL AUX2, BCAUX2, D02HBF, RNAUX2, X04ABF

* .. Intrinsic Functions ..
INTRINSIC real

* .. Executable Statements ..
WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 2’
CALL X04ABF(1,NOUT)
PARAM(1) = 32.0e0
PARAM(2) = 6000.0e0
PARAM(3) = 0.54e0
PARERR(1) = 1.0e-5
PARERR(2) = 1.0e-4
PARERR(3) = 1.0e-4
ERROR(1) = 1.0e-2
ERROR(2) = 1.0e-2
ERROR(3) = 1.0e-2

* * Set IFAIL to 111 to obtain monitoring information *
IFAIL = 11

*
CALL D02HBF(PARAM,N1,PARERR,ERROR,N,C,M1,AUX2,BCAUX2,RNAUX2,W,IW,

+ IFAIL)
*

WRITE (NOUT,*)
IF (IFAIL.NE.0) THEN

WRITE (NOUT,99999) ’IFAIL = ’, IFAIL
IF (IFAIL.LE.5 .AND. IFAIL.NE.1) THEN

WRITE (NOUT,*)
WRITE (NOUT,99996) ’W(1,2) = ’, W(1,2), ’ W(.,1) = ’,

+ (W(I,1),I=1,N)
END IF

ELSE
WRITE (NOUT,*) ’Final parameters’
WRITE (NOUT,99998) (PARAM(I),I=1,N1)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Final solution’
WRITE (NOUT,*) ’X-value Components of solution’
CALL RNAUX2(X,X1,PARAM)
H = (X1-X)/real(M1-1)
DO 20 I = 1, M1

WRITE (NOUT,99997) X + (I-1)*H, (C(J,I),J=1,N)

D02HBF.10 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02HBF

20 CONTINUE
END IF
RETURN

*
99999 FORMAT (1X,A,I3)
99998 FORMAT (1X,1P,3e15.3)
99997 FORMAT (1X,F7.0,2F13.1,F13.3)
99996 FORMAT (1X,A,F9.4,A,10e10.3)

END
*

SUBROUTINE AUX2(X,Y,F,PARAM)
* .. Parameters ..

INTEGER N
PARAMETER (N=3)

* .. Scalar Arguments ..
real X

* .. Array Arguments ..
real F(N), PARAM(N), Y(N)

* .. Intrinsic Functions ..
INTRINSIC COS, TAN

* .. Executable Statements ..
F(1) = TAN(Y(3))
F(2) = -PARAM(1)*TAN(Y(3))/Y(2) - 0.00002e0*Y(2)/COS(Y(3))
F(3) = -PARAM(1)/Y(2)**2
RETURN
END

*
SUBROUTINE RNAUX2(X,X1,PARAM)

* .. Parameters ..
INTEGER N
PARAMETER (N=3)

* .. Scalar Arguments ..
real X, X1

* .. Array Arguments ..
real PARAM(N)

* .. Executable Statements ..
X = 0.0e0
X1 = PARAM(2)
RETURN
END

*
SUBROUTINE BCAUX2(G,G1,PARAM)

* .. Parameters ..
INTEGER N
PARAMETER (N=3)

* .. Array Arguments ..
real G(N), G1(N), PARAM(N)

* .. Executable Statements ..
G(1) = 0.0e0
G(2) = 500.0e0
G(3) = 0.5e0
G1(1) = 0.0e0
G1(2) = 450.0e0
G1(3) = PARAM(3)
RETURN
END

[NP3390/19/pdf] D02HBF.11

D02HBF D02 – Ordinary Differential Equations

9.2.2 Program Data

None.

9.2.3 Program Results

Case 2

Final parameters
3.239E+01 5.962E+03 -5.353E-01

Final solution
X-value Components of solution

0. 0.0 500.0 0.500
1192. 529.6 451.6 0.328
2385. 807.2 420.3 0.123
3577. 820.4 409.4 -0.103
4769. 556.1 420.0 -0.330
5962. 0.0 450.0 -0.535

D02HBF.12 (last) [NP3390/19/pdf]

