
D02 – Ordinary Differential Equations

D02KEF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D02KEF finds a specified eigenvalue of a regular singular second-order Sturm–Liouville system on a finite
or infinite range, using a Pruefer transformation and a shooting method. It also reports values of the
eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their
derivatives.

2 Specification

SUBROUTINE D02KEF(XPOINT, M, MATCH, COEFFN, BDYVAL, K, TOL, ELAM,
1 DELAM, HMAX, MAXIT, MAXFUN, MONIT, REPORT, IFAIL)
INTEGER M, MATCH, K, MAXIT, MAXFUN, IFAIL
real XPOINT(M), TOL, ELAM, DELAM, HMAX(2,M)
EXTERNAL COEFFN, BDYVAL, MONIT, REPORT

3 Description

D02KEF has essentially the same purpose as D02KDF with minor modifications to enable values of the
eigenfunction to be obtained after convergence to the eigenvalue has been achieved.

It first finds a specified eigenvalue λ̃ of a Sturm–Liouville system defined by a self-adjoint differential
equation of the second-order

(p(x)y′)′ + q(x;λ)y = 0, a < x < b

together with the appropriate boundary conditions at the two (finite or infinite) end-points a and b.
The functions p and q, which are real-valued, must be defined by a subroutine COEFFN. The boundary
conditions must be defined by a subroutine BDYVAL, and, in the case of a singularity at a or b, take the
form of an asymptotic formula for the solution near the relevant end-point.

When the final estimate λ = λ̃ of the eigenvalue has been found, the routine integrates the differential
equation once more with that value of λ, and with initial conditions chosen so that the integral

S =
∫ b

a

y(x)2
∂q

∂λ
(x;λ) dx

is approximately one. When q(x;λ) is of the form λw(x) + q(x), which is the most common case, S
represents the square of the norm of y induced by the inner product

< f, g >=
∫ b

a

f(x)g(x)w(x)dx,

with respect to which the eigenfunctions are mutually orthogonal. This normalisation of y is only
approximate, but experience shows that S generally differs from unity by only one or two per cent.

During this final integration the REPORT routine supplied by the user is called at each integration mesh
point x. Sufficient information is returned to permit the user to compute y(x) and y′(x) for printing or
plotting. For reasons described in Section 8.2, D02KEF passes across to REPORT, not y and y′, but the
Pruefer variables β, φ and ρ on which the numerical method is based. Their relationship to y and y′ is
given by the equations

p(x)y′ =
√

β exp
(ρ

2

)
cos

(
φ

2

)
, y =

1√
β
exp

(ρ

2

)
sin

(
φ

2

)
.

A specimen REPORT routine is given in Section 9 below.

For the theoretical basis of the numerical method to be valid, the following conditions should hold on the
coefficient functions:
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(a) p(x) must be non-zero and of one sign throughout the interval (a, b); and,
(b) ∂q

∂λ must be of one sign throughout (a, b) for all elevant values of λ, and must not be identically
zero as x varies, for any λ.

Points of discontinuity in the functions p and q or their derivatives are allowed, and should be included
as ‘break-points’ in the array XPOINT.

A good account of the theory of Sturm–Liouville systems, with some description of Pruefer
transformations, is given in Birkhoff and Rota [4], Chapter X. An introduction for the user of Pruefer
transformations for the numerical solution of eigenvalue problems arising from physics and chemistry is
Bailey [2].

The scaled Pruefer method is fairly recent, and is described in a short note by Pryce [6] and in some
detail in the technical report [5].
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5 Parameters

1: XPOINT(M) — real array Input

On entry: the points where the boundary conditions computed by BDYVAL are to be imposed, and
also any break-points, i.e., XPOINT(1) to XPOINT(m) must contain values x1, . . . , xm such that

x1 ≤ x2 < x3 < . . . < xm−1 ≤ xm

with the following meanings:

(a) x1 and xm are the left and right end-points, a and b, of the domain of definition of the Sturm–
Liouville system if these are finite. If either a or b is infinite, the corresponding value x1 or xm

may be a more-or-less arbitrarily ‘large’ number of appropriate sign.
(b) x2 and xm−1 are the Boundary Matching Points (BMP’s), that is the points at which the left

and right boundary conditions computed in BDYVAL are imposed.

If the left-hand end-point is a regular point then the user should set x2 = x1(= a), while if
it is a singular point the user must set x2 > x1. Similarly xm−1 = xm(= b) if the right-hand
end-point is regular, and xm−1 < xm if it is singular.

(c) The remaining m−4 points x3, . . . , xm−2, if any, define ‘break-points’ which divide the interval
[x2, xm−1] into m− 3 sub-intervals

i1 = [x2, x3], . . . , im−3 = [xm−2, xm−1]
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Numerical integration of the differential equation is stopped and restarted at each break-point. In
simple cases no break-points are needed. However if p(x) or q(x;λ) are given by different formulae
in different parts of the range, then integration is more efficient if the range is broken up by break-
points in the appropriate way. Similarly points where any jumps occur in p(x) or q(x;λ), or in their
derivatives up to the fifth-order, should appear as break-points.

Constraint: X(1) ≤ X(2) < . . . < X(M−1) ≤ X(M).

2: M — INTEGER Input

On entry: the number of points in the array XPOINT.

Constraint: M ≥ 4.

3: MATCH — INTEGER Input/Output

On entry: MATCH must be set to the index of the ‘break-point’ to be used as the matching point
(see Section 8.3). If MATCH is set to a value outside the range [2,m−1] then a default value is taken,
corresponding to the break-point nearest the centre of the interval [XPOINT(2),XPOINT}(m− 1)].

On exit: the index of the break-point actually used as the matching point.

4: COEFFN — SUBROUTINE, supplied by the user. External Procedure

COEFFN must compute the values of the coefficient functions p(x) and q(x;λ) for given values of
x and λ. Section 3 states conditions which p and q must satisfy.

Its specification is:

SUBROUTINE COEFFN(P, Q, DQDL, X, ELAM, JINT)
INTEGER JINT
real P, Q, DQDL, X, ELAM

1: P — real Output
On exit: the value of p(x) for the current value of x.

2: Q — real Output
On exit: the value of q(x;λ) for the current value of x and the current trial value of λ.

3: DQDL — real Output
On exit: the value of ∂q

∂λ (x;λ) for the current value of x and the current trial value of λ.
However DQDL is only used in error estimation and an approximation (say to within 20%)
will suffice.

4: X — real Input
On entry: the current value of x.

5: ELAM — real Input
On entry: the current trial value of the eigenvalue parameter λ.

6: JINT — INTEGER Input
On entry: the index j of the sub-interval ij (see specification of XPOINT) in which x lies.

See Section 8.4 and Section 9 for examples.
COEFFN must be declared as EXTERNAL in the (sub)program from which D02KEF is called.
Parameters denoted as Input must not be changed by this procedure.

5: BDYVAL — SUBROUTINE, supplied by the user. External Procedure

BDYVAL must define the boundary conditions. For each end-point, BDYVAL must return (in YL
or YR) values of y(x) and p(x)y′(x) which are consistent with the boundary conditions at the end-
points; only the ratio of the values matters. Here x is a given point (XL or XR) equal to, or close
to, the end-point.
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For a regular end-point (a, say), x = a; and a boundary condition of the form

c1y(a) + c2y
′(a) = 0

can be handled by returning constant values in YL, e.g., YL(1) = c2 and YL(2) = −c1p(a).

For a singular end-point however, YL(1) and YL(2) will in general be functions of XL and ELAM,
and YR(1) and YR(2) functions of XR and ELAM, usually derived analytically from a power-series
or asymptotic expansion. Examples are given in Section 8.5 and Section 9.

Its specification is:

SUBROUTINE BDYVAL(XL, XR, ELAM, YL, YR)
real XL, XR, ELAM, YL(3), YR(3)

1: XL — real Input
On entry: if a is a regular end-point of the system (so that a = x1 = x2), then XL contains a. If
a is a singular point (so that a ≤ x1 < x2), then XL contains a point x such that x1 < x ≤ x2).

2: XR — real Input
On entry: if b is a regular end-point of the system (so that xm−1 = xm = b), then XR contains
b. If b is a singular point (so that xm−1 < xm ≤ b), then XR contains a point x such that
xm−1 ≤ x < xm.

3: ELAM — real Input
On entry: the current trial value of λ.

4: YL(3) — real array Output
On exit: YL(1) and YL(2) should contain values of y(x) and p(x)y′(x) respectively (not both
zero) which are consistent with the boundary condition at the left-hand end-point, given by x
= XL. YL(3) should not be set.

5: YR(3) — real array Output
On exit: YR(1) and YR(2) should contain values of y(x) and p(x)y′(x) respectively (not both
zero) which are consistent with the boundary condition at the right-hand end-point, given by
x = XR. YR(3) should not be set.

BDYVAL must be declared as EXTERNAL in the (sub)program from which D02KEF is called.
Parameters denoted as Input must not be changed by this procedure.

6: K — INTEGER Input

On entry: the index k of the required eigenvalue when the eigenvalues are ordered

λ0 < λ1 < λ2 < . . . < λk < . . . .

Constraint: K ≥ 0.

7: TOL — real Input

On entry: the tolerance parameter which determines the accuracy of the computed eigenvalue. The
error estimate held in DELAM on exit satisfies the mixed absolute/relative error test

DELAM ≤ TOL×max(1.0, |ELAM|) (1)

where ELAM is the final estimate of the eigenvalue. DELAM is usually somewhat smaller than the
right-hand side of (1) but not several orders of magnitude smaller.

Constraint: TOL > 0.0.
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8: ELAM — real Input/Output

On entry: an initial estimate of the eigenvalue λ̃.

On exit: the final computed estimate, whether or not an error occurred.

9: DELAM — real Input/Output

On entry: an indication of the scale of the problem in the λ-direction. DELAM holds the initial
‘search step’ (positive or negative). Its value is not critical but the first two trial evaluations are
made at ELAM and ELAM + DELAM, so the routine will work most efficiently if the eigenvalue
lies between these values. A reasonable choice (if a closer bound is not known) is half the distance
between adjacent eigenvalues in the neighbourhood of the one sought. In practice, there will often
be a problem, similar to the one in hand but with known eigenvalues, which will help one to choose
initial values for ELAM and DELAM.

If DELAM = 0.0 on entry, it is given the default value of 0.25×max(1.0, |ELAM|).

On exit: with IFAIL = 0, DELAM holds an estimate of the absolute error in the computed
eigenvalue, that is |λ̃ − ELAM| � DELAM. (In Section 8.2 we discuss the assumptions under
which this is true.) The true error is rarely more than twice, or less than a tenth, of the estimated
error.

With IFAIL 	= 0, DELAM may hold an estimate of the error, or its initial value, depending on the
value of IFAIL. See Section 6 for further details.

10: HMAX(2,M) — real array Input/Output

On entry: HMAX(1, j) should contain a maximum step size to be used by the differential equation
code in the jth sub-interval ij (as described in the specification of parameter XPOINT), for
j = 1, 2, . . . ,m− 3. If it is zero the routine generates a maximum step size internally.

It is recommended that HMAX(1, j) be set to zero unless the coefficient functions p and q have
features (such as a narrow peak) within the jth sub-interval that could be ‘missed’ if a long step
were taken. In such a case HMAX(1, j) should be set to about half the distance over which the
feature should be observed. Too small a value will increase the computing time for the routine. See
Section 8 for further suggestions.

The rest of the array is used as workspace.

On exit: HMAX(1,m− 1) and HMAX(1,m) contain the sensitivity coefficients σl, σr, described in
Section 8.6. Other entries contain diagnostic output in case of an error (see Section 6).

11: MAXIT — INTEGER Input/Output

On entry: a bound on nr, the number of root-finding iterations allowed, that is the number of trial
values of λ that are used. If MAXIT ≤ 0, no such bound is assumed. (See also under MAXFUN.)

Suggested value: MAXIT = 0.

On exit: MAXIT will have been decreased by the number of iterations actually performed, whether
or not it was positive on entry.

12: MAXFUN — INTEGER Input

On entry: a bound on nf , the number of calls to COEFFN made in any one root-finding iteration.
If MAXFUN ≤ 0, no such bound is assumed.

Suggested value: MAXFUN = 0.

MAXFUN and MAXIT may be used to limit the computational cost of a call to D02KEF, which is
roughly proportional to nr × nf .
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13: MONIT — SUBROUTINE, supplied by the user. External Procedure

MONIT is called by D02KEF at the end of each root-finding iteration and allows the user to monitor
the course of the computation by printing out the parameters (see Section 8 for an example).

If no monitoring is required, the dummy subroutine D02KAY may be used. (D02KAY is included in
the NAG Fortran Library. In some implementations of the Library the name is changed to KAYD02:
refer to the Users’ Note for your implementation.)

Its specification is:

SUBROUTINE MONIT(MAXIT, IFLAG, ELAM, FINFO)
INTEGER MAXIT, IFLAG
real ELAM, FINFO(15)

1: MAXIT — INTEGER Input
On entry: the current value of the parameter MAXIT of D02KEF; this is decreased by one at
each iteration.

2: IFLAG — INTEGER Input
On entry: IFLAG describes what phase the computation is in, as follows:

IFLAG < 0

an error occurred in the computation of the ‘miss-distance’ at this iteration; an error exit
from D02KEF with IFAIL = −IFLAG will follow.

IFLAG = 1

the routine is trying to bracket the eigenvalue λ̃.
IFLAG = 2

the routine is converging to the eigenvalue λ̃ (having already bracketed it).

3: ELAM — real Input
On entry: the current trial value of λ.

4: FINFO(15) — real array Input
On entry: information about the behaviour of the shooting method, and diagnostic information
in the case of errors. It should not normally be printed in full if no error has occurred (that
is, if IFLAG > 0), though the first few components may be of interest to the user. In case of
an error (IFLAG < 0) all the components of FINFO should be printed.

The contents of FINFO are as follows:

FINFO(1): the current value of the ‘miss-distance’ or ‘residual’ function f(λ) on which the
shooting method is based. (See Section 8.2 for further notes on it.) FINFO(1) is set to zero if
IFLAG < 0.

FINFO(2): an estimate of the quantity ∂λ defined as follows. Consider the perturbation in
the miss-distance f(λ) that would result if the local error, in the solution of the differential
equation, were always positive and equal to its maximum permitted value. Then ∂λ is the
perturbation in λ that would have the same effect on f(λ). Thus, at the zero of f(λ), |∂λ| is an
approximate bound on the perturbation of the zero (that is the eigenvalue) caused by errors in
numerical solution. If ∂λ is very large then it is possible that there has been a programming
error in COEFFN such that q is independent of λ. If this is the case, an error exit with IFAIL
= 5 should follow. FINFO(2) is set to zero if IFLAG < 0.

FINFO(3): the number of internal iterations, using the same value of λ and tighter accuracy
tolerances, needed to bring the accuracy (that is the value of ∂λ) to an acceptable value. Its
value should normally be 1.0, and should almost never exceed 2.0.

FINFO(4): the number of calls to COEFFN at this iteration.

FINFO(5): the number of successful steps taken by the internal differential equation solver at
this iteration. A step is successful if it is used to advance the integration.
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FINFO(6): the number of unsuccessful steps used by the internal integrator at this iteration.

FINFO(7): the number of successful steps at the maximum step size taken by the internal
integrator at this iteration.

FINFO(8): is not used.

FINFO(9) to FINFO(15): set to zero, unless IFLAG < 0 in which case they hold the following
values describing the point of failure:

FINFO(9): contains the index of the sub-interval where failure occurred, in the range 1 to
m− 3. In case of an error in BDYVAL, it is set to 0 or m − 2 depending on whether the left
or right boundary condition caused the error.

FINFO(10): the value of f the independent variable x, the point at which the error occurred.
In case of an error in BDYVAL, it is set to the value of XL or XR as appropriate (see the
specification of BDYVAL).

FINFO(11), FINFO(12), FINFO(13): the current values of the Pruefer dependent variables β,
φ and ρ respectively. These are set to zero in case of an error in BDYVAL.

FINFO(14): the local-error tolerance being used by the internal integrator at the point of
failure. This is set to zero in the case of an error in BDYVAL.

FINFO(15): the last integration mesh point. This is set to zero in the case of an error in
BDYVAL.

MONIT must be declared as EXTERNAL in the (sub)program from which D02KEF is called.
Parameters denoted as Input must not be changed by this procedure.

14: REPORT — SUBROUTINE, supplied by the user. External Procedure

This routine provides the means by which the user may compute the eigenfunction y(x) and its
derivative at each integration mesh point x. (See Section 8 for an example).

Its specification is:

SUBROUTINE REPORT(X, V, JINT)
INTEGER JINT
real X, V(3)

1: X — real Input
On entry: the current value of the independent variable x. See Section 8.3 for the order in
which values of x are supplied.

2: V(3) — real array Input
On entry: V(1), V(2), V(3) hold the current values of the Pruefer variables β, φ, ρ respectively.

3: JINT — INTEGER Input
On entry: JINT indicates the sub-interval between break-points in which X lies exactly as for
the routine COEFFN, except that at the extreme left end-point (when x = XPOINT(2)) JINT
is set to 0 and at the extreme right end-point (when x = xr = XPOINT(m− 1)) JINT is set
to m− 2.

REPORT must be declared as EXTERNAL in the (sub)program from which D02KEF is called.
Parameters denoted as Input must not be changed by this procedure.
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15: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

A parameter error. All parameters (except IFAIL) are left unchanged. The reason for the error is
shown by the value of HMAX(2,1) as follows:

HMAX(2,1) = 1: M < 4;

HMAX(2,1) = 2: K < 0;

HMAX(2,1) = 3: TOL ≤ 0.0;

HMAX(2,1) = 4: XPOINT(1) to XPOINT(m) are not in ascending order.

HMAX(2,2) gives the position i in XPOINT where this was detected.

IFAIL = 2

At some call to BDYVAL, invalid values were returned, that is, either YL(1) = YL(2) = 0.0, or
YR(1) = YR(2) = 0.0 (a programming error in BDYVAL). See the last call of MONIT for details.

This error exit will also occur if p(x) is zero at the point where the boundary condition is imposed.
Probably BDYVAL was called with XL equal to a singular end-point a or with XR equal to a
singular end-point b.

IFAIL = 3

At some point between XL and XR the value of p(x) computed by COEFFN became zero or
changed sign. See the last call of MONIT for details.

IFAIL = 4

MAXIT > 0 on entry, and after MAXIT iterations the eigenvalue had not been found to the
required accuracy.

IFAIL = 5

The ‘bracketing’ phase (with parameter IFLAG of MONIT equal to 1) failed to bracket the
eigenvalue within ten iterations. This is caused by an error in formulating the problem (for example,
q is independent of λ), or by very poor initial estimates of ELAM, DELAM.

On exit ELAM and ELAM+ DELAM give the end-points of the interval within which no eigenvalue
was located by the routine.

IFAIL = 6

MAXFUN > 0 on entry, and the last iteration was terminated because more than MAXFUN calls
to COEFFN were used. See the last call of MONIT for details.

IFAIL = 7

To obtain the desired accuracy the local error tolerance was set so small at the start of some
sub-interval that the differential equation solver could not choose an initial step size large enough
to make significant progress. See the last call of MONIT for diagnostics.
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IFAIL = 8

At some point inside a sub-interval the step size in the differential equation solver was reduced to a
value too small to make significant progress (for the same reasons as with IFAIL = 7). This could
be due to pathological behaviour of p(x) and q(x;λ) or to an unreasonable accuracy requirement
or to the current value of λ making the equations ‘stiff’. See the last call of MONIT for details.

IFAIL = 9

TOL is too small for the problem being solved and the machine precision is being used. The
final value of ELAM should be a very good approximation to the eigenvalue.

IFAIL = 10

C05AZF, called by D02KEF, has terminated with the error exit corresponding to a pole of the
residual function f(λ). This error exit should not occur, but if it does, try solving the problem
again with a smaller value for TOL.

IFAIL = 11
IFAIL = 12

A serious error has occurred in the specified routine. Check all subroutine calls and array
dimensions. Seek expert help.

HMAX(2,1) holds the failure exit number from the routine where the failure occurred. In the case
of a failure in C05AZF, HMAX(2,2) holds the value of parameter IND of C05AZF.

Note. Error exits with IFAIL = 2, 3, 6, 7, 8, 11 are caused by being unable to set up or solve the differential
equation at some iteration, and will be immediately preceded by a call of MONIT giving diagnostic
information. For other errors, diagnostic information is contained in HMAX(2, j), for j = 1, 2, . . . ,m,
where appropriate.

7 Accuracy

See the discussion in Section 8.2.

8 Further Comments
8.1 Timing

The time taken by the routine depends on the complexity of the coefficient functions, whether they or
their derivatives are rapidly changing, the tolerance demanded, and how many iterations are needed to
obtain convergence. The amount of work per iteration is roughly doubled when TOL is divided by 16.
To make the most economical use of the routine, one should try to obtain good initial values for ELAM
and DELAM, and, where appropriate, good asymptotic formulae. The boundary matching points should
not be set unnecessarily close to singular points. The extra time needed to compute the eigenfunction is
principally the cost of one additional integration once the eigenvalue has been found.

8.2 General Description of the Algorithm

A shooting method, for differential equation problems containing unknown parameters, relies on the
construction of a ‘miss-distance function’, which for given trial values of the parameters measures how
far the conditions of the problem are from being met. The problem is then reduced to one of finding the
values of the parameters for which the miss-distance function is zero, that is to a root-finding process.
Shooting methods differ mainly in how the miss-distance is defined.

This routine defines a miss-distance f(λ) based on the rotation around the origin of the point P (x) =
(p(x)y′(x), y(x)) in the Phase Plane as the solution proceeds from a to b. The boundary-conditions define
the ray (i.e., two-sided line through the origin) on which p(x) should start, and the ray on which it should
finish. The eigenvalue index k defines the total number of half-turns it should make. Numerical solution
is actually done by ‘shooting forward’ from x = a and ‘shooting backward’ from x = b to a matching
point x = c. Then f(λ) is taken as the angle between the rays to the two resulting points Pa(c) and
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Figure 1

Pb(c). A relative scaling of the py′ and y axes, based on the behaviour of the coefficient functions p and
q, is used to improve the numerical behaviour.

The resulting function f(λ) is monotonic over −∞ < λ < ∞, increasing if ∂q
∂λ > 0 and decreasing if

∂q
∂λ < 0, with a unique zero at the desired eigenvalue λ̃. The routine measures f(λ) in units of a half-turn.
This means that as λ increases, f(λ) varies by about 1 as each eigenvalue is passed. (This feature implies
that the values of f(λ) at successive iterations – especially in the early stages of the iterative process – can
be used with suitable extrapolation or interpolation to help the choice of initial estimates for eigenvalues
near to the one currently being found.)

The routine actually computes a value for f(λ) with errors, arising from the local errors of the differential
equation code and from the asymptotic formulae provided by the user if singular points are involved.
However, the error estimate output in DELAM is usually fairly realistic, in that the actual error
|λ̃− ELAM| is within an order of magnitude of DELAM.

We pass the values of β, φ, ρ across through REPORT rather than converting them to values of y, y′

inside D02KEF, for the following reasons. First, there may be cases where auxiliary quantities can be
more accurately computed from the Pruefer variables than from y and y′. Second, in singular problems
on an infinite interval y and y′ may underflow towards the end of the range, whereas the Pruefer variables
remain well-behaved. Third, with high-order eigenvalues (and therefore highly oscillatory eigenfunctions)
the eigenfunction may have a complete oscillation (or more than one oscillation) between two mesh points,
so that values of y and y′ at mesh points give a very poor representation of the curve. The probable
behaviour of the Pruefer variables in this case is that β and ρ vary slowly whilst φ increases quickly: for
all three Pruefer variables linear interpolation between the values at adjacent mesh points is probably
sufficiently accurate to yield acceptable intermediate values of β, φ, ρ (and hence of y, y′) for graphical
purposes.

Similar considerations apply to the exponentially decaying ‘tails’ of the eigenfunctions that often occur
in singular problems. Here φ has approximately constant value whilst ρ increases rapidly in the direction
of integration, though the step length is generally fairly small over such a range.

If the solution is output through REPORT at x-values which are too widely spaced, the step length can
be controlled by choosing HMAX suitably, or, preferably, by reducing TOL. Both these choices will lead
to more accurate eigenvalues and eigenfunctions but at some computational cost.

8.3 The Position of the Shooting Matching Point c

This point is always one of the values xi in array XPOINT. It may be specified using the parameter
MATCH. The default value is chosen to be the value of that xi, 2 ≤ i ≤ m − 1, that lies closest to the
middle of the interval [x2, xm−1]. If there is a tie, the rightmost candidate is chosen. In particular if
there are no break-points then c = xm−1(= x3) – that is the shooting is from left to right in this case. A
break-point may be inserted purely to move c to an interior point of the interval, even though the form
of the equations does not require it. This often speeds up convergence especially with singular problems.
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Note that the shooting method used by the code integrates first from the left-hand end xl, then from
the right-hand end xr, to meet at the matching point c in the middle. This will of course be reflected in
printed or graphical output. The diagram shows a possible sequence of nine mesh points τ1 through τ9
in the order in which they appear, assuming there are just two sub-intervals (so m = 5).
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Figure 2

Since the shooting method usually fails to match up the two ‘legs’ of the curve exactly, there is bound to
be a jump in y, or in p(x)y′ or both, at the matching point c. The code in fact ‘shares’ the discrepancy
out so that both y and p(x)y′ have a jump. A large jump does not imply an inaccurate eigenvalue, but
implies either

(a) a badly chosen matching point: if q(x;λ) has a ‘humped’ shape, c should be chosen near the
maximum value of q, especially if q is negative at the ends of the interval.

(b) An inherently ill-conditioned problem, typically one where another eigenvalue is pathologically close
to the one being sought. In this case it is extremely difficult to obtain an accurate eigenfunction.

In Section 9 below, we find the 11th eigenvalue and corresponding eigenfunction of the equation

y′′ + (λ− x− 2/x2)y = 0 on 0 < x < ∞,

the boundary conditions being that y should remain bounded as x tends to 0 and x tends to ∞. The
coding of this problem is discussed in detail in Section 8.5.

The choice of matching point c is open. If we choose c = 30.0 as in the D02KDF example program
we find that the exponentially increasing component of the solution dominates and we get extremely
inaccurate values for the eigenfunction (though the eigenvalue is determined accurately). The values of
the eigenfunction calculated with c = 30.0 are given schematically in Figure 3

If we choose c as the maximum of the hump in q(x;λ) (see (a) above) we instead obtain the accurate
results given in Figure 4

8.4 Examples of Coding the COEFFN Routine

Coding COEFFN is straightforward except when break-points are needed. The examples below show:

(a) a simple case,
(b) a case in which discontinuities in the coefficient functions or their derivatives necessitate break-

points, and
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(c) a case where break-points together with the HMAX parameter are an efficient way to deal with a
coefficient function that is well-behaved except over one short interval.

(Some of these cases are among the examples in Section 9.)

Example A

The modified Bessel equation
x(xy′)′ + (λx2 − ν2)y = 0.

Assuming the interval of solution does not contain the origin, dividing through by x, we have p(x) = x,
q(x;λ) = λx− ν2/x. The code could be

SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT)
...
P = X
Q = ELAM*X - NU*NU/X
DQDL = X
RETURN
END

where NU (standing for ν) is a real variable that might be defined in a DATA statement, or might be
in user-declared COMMON so that its value could be set in the main program.

Example B

The Schroedinger equation
y′′ + (λ + q(x))y = 0

where
q(x) =

{
x2 − 10 (|x| ≤ 4),

6/|x| (|x| > 4),

over some interval ‘approximating to (−∞,∞)’, say [−20, 20]. Here we need break-points at ±4, forming
three sub-intervals i1 = [−20,−4], i2 = [−4, 4], i3 = [4, 20].
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The code could be

SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT)
...
IF (JINT.EQ.2) THEN
Q = ELAM + XX - 10.0E0

ELSE
Q = ELAM + 6.0E0/ABS(X)

ENDIF
P = 1.0E0
DQDL = 1.0E0
RETURN
END

The array XPOINT would contain the values x1, −20.0, −4.0, +4.0, +20.0, x6 and m would be 6. The
choice of appropriate values for x1 and x6 depends on the form of the asymptotic formula computed by
BDYVAL and the technique is discussed in the next subsection.

Example C
y′′ + λ(1 − 2e−100x2

)y = 0, over − 10 ≤ x ≤ 10.

Here q(x;λ) is nearly constant over the range except for a sharp inverted spike over approximately
−0.1 ≤ x ≤ 0.1. There is a danger that the routine will build up to a large step size and ‘step over’ the
spike without noticing it. By using break-points – say at ±0.5 – one can restrict the step size near the
spike without impairing the efficiency elsewhere.

The code for COEFFN could be

SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT)
...
P = 1.0E0
DQDL = 1.0E0 - 2.0E0*EXP(-100.0E0*X*X)
Q = ELAM*DQDL
RETURN
END

XPOINT might contain -0.0, -10.0, -0.5, 0.5, 10.0, 10.0 (assuming ±10 are regular points) and m would
be 6. HMAX(1, j), j = 1, 2, 3 might contain 0.0, 0.1 and 0.0.

8.5 Examples of Boundary Conditions at Singular Points

Quoting from Bailey [2] page 243: ‘Usually ... the differential equation has two essentially different types
of solution near a singular point, and the boundary condition there merely serves to distinguish one kind
from the other. This is the case in all the standard examples of mathematical physics.’

In most cases the behaviour of the ratio p(x)y′/y near the point is quite different for the two types of
solution. Essentially what the user provides through his BDYVAL routine is an approximation to this
ratio, valid as x tends to the singular point (SP).

The user must decide (a) how accurate to make this approximation or asymptotic formula, for example
how many terms of a series to use, and (b) where to place the boundary matching point (BMP) at which
the numerical solution of the differential equation takes over from the asymptotic formula. Taking the
BMP closer to the SP will generally improve the accuracy of the asymptotic formula, but will make the
computation more expensive as the Pruefer differential equations generally become progressively more
ill-behaved as the SP is approached. The user is strongly recommended to experiment with placing the
BMPs. In many singular problems quite crude asymptotic formulae will do. To help the user avoid
needlessly accurate formulae, D02KEF outputs two ‘sensitivity coefficients’ σl, σr which estimate how
much the errors at the BMP’s affect the computed eigenvalue. They are described in detail below, see
Section 8.6.
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Example of coding BDYVAL:

The example below illustrates typical situations:

y′′ +
(
λ− x− 2

x2

)
y = 0, for 0 < x < ∞

the boundary conditions being that y should remain bounded as x tends to 0 and x tends to ∞.

At the end x = 0 there is one solution that behaves like x2 and another that behaves like x−1. For
the first of these solutions p(x)y′/y is asymptotically 2/x while for the second it is asymptotically −1/x.
Thus the desired ratio is specified by setting

YL(1) = x and YL(2) = 2.0.

At the end x = ∞ the equation behaves like Airy’s equation shifted through λ, i.e., like y′′− ty = 0 where
t = x− λ, so again there are two types of solution. The solution we require behaves as

exp
(
−2
3
t

3
2

)
/

4
√
t.

and the other as
exp

(
+
2
3
t

3
2

)
/

4
√
t.

ence, the desired solution has p(x)y′/y ∼ −
√
t so that we could set YR(1) = 1.0 and YR(2) = −

√
x− λ.

The complete subroutine might thus be

SUBROUTINE BDYVAL (XL,XR,ELAM,YL,YR)

real XL, XR, ELAM, YL(3), YR(3)

YL(1) = XL
YL(2) = 2.0E0

YR(1) = 1.0E0
YR(2) = -SQRT(XR - ELAM)

RETURN
END

Clearly for this problem it is essential that any value given by D02KEF to XR is well to the right of the
value of ELAM, so that the user must vary the right-hand BMP with the eigenvalue index k. One would
expect λk to be near the kth zero of the Airy function Ai(x), so there is no problem in estimating ELAM.

More accurate asymptotic formulae are easily found – near x = 0 by the standard Frobenius method,
and near x = ∞ by using standard asymptotics for Ai(x), Ai′(x) (see [1], p. 448). For example, by the
Frobenius method the solution near x = 0 has the expansion

y = x2(c0 + c1x+ c2x
2 + . . .)

with
c0 = 1, c1 = 0, c2 = − λ

10
, c3 =

1
18

, . . . , cn =
cn−3 − λcn−2

n(n+ 3)
.

This yields
p(x)y′

y
=

2− 2
5λx

2 + . . .

x
(
1− λ

10x
2 + . . .

) .

8.6 The Sensitivity Parameters σl and σr

The sensitivity parameters σl, σr (held in HMAX(1,m − 1) and HMAX(1,m) on output) estimate the
effect of errors in the boundary conditions. For sufficiently small errors ∆y, ∆py′ in y and py′ respectively,
the relations

∆λ � (y.∆py′ − py′.∆y)lσl

∆λ � (y.∆py′ − py′.∆y)rσr

are satisfied where the subscripts l, r denote errors committed at left- and right-hand BMP’s respectively,
and ∆λ denotes the consequent error in the computed eigenvalue.
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8.7 ‘Missed Zeros’

This is a pitfall to beware of at a singular point. If the BMP is chosen so far from the SP that a zero of
the desired eigenfunction lies in between them, then the routine will fail to ‘notice’ this zero. Since the
index of k of an eigenvalue is the number of zeros of its eigenfunction, the result will be that:

(a) The wrong eigenvalue will be computed for the given index k – in fact some λk+k′ will be found
where k′ ≥ 1.

(b) The same index k can cause convergence to any of several eigenvalues depending on the initial
values of ELAM and DELAM.

It is up to the user to take suitable precautions – for instance by varying the position of the BMP’s in
the light of his knowledge of the asymptotic behaviour of the eigenfunction at different eigenvalues.

9 Example

To find the 11th eigenvalue and eigenfunction of the example of Section 8.5, using the simple asymptotic
formulae for the boundary conditions.

Comparison of the results from this example program with the corresponding results from D02KDF
example program shows that similar output is produced from the routine MONIT, followed by the
eigenfunction values from REPORT, and then a further line of information from MONIT (corresponding
to the integration to find the eigenfunction). Final information is printed within the example program
exactly as with D02KDF.

Note the discrepancy at the matching point c (= 3
√
4, the maximum of q(x;λ), in this case) between the

solutions obtained by integrations from left and right end-points.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D02KEF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER M
PARAMETER (M=5)

* .. Local Scalars ..
real DELAM, ELAM, TOL
INTEGER IFAIL, IFLAG, K, MATCH, MAXIT

* .. Local Arrays ..
real HMAX(2,M), XPOINT(M)

* .. External Subroutines ..
EXTERNAL BDYVL, COEFF, D02KAY, D02KEF, REPORT

* .. Executable Statements ..
WRITE (NOUT,*) ’D02KEF Example Program Results’
WRITE (NOUT,*)
WRITE (NOUT,*) ’A singular problem’
TOL = 1.0e-4
XPOINT(1) = 0.0e0
XPOINT(2) = 0.1e0
XPOINT(3) = 4.0e0**(1.0e0/3.0e0)
XPOINT(4) = 30.0e0
XPOINT(5) = 30.0e0
HMAX(1,1) = 0.0e0
HMAX(1,2) = 0.0e0
MAXIT = 0
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K = 11
ELAM = 14.0e0
DELAM = 1.0e0
MATCH = 0
IFLAG = 0
IFAIL = 0

* * To obtain monitoring information from the supplied
* subroutine MONIT replace the name D02KAY by MONIT in
* the next statement, and declare MONIT as external *
*

CALL D02KEF(XPOINT,M,MATCH,COEFF,BDYVL,K,TOL,ELAM,DELAM,HMAX,
+ MAXIT,IFLAG,D02KAY,REPORT,IFAIL)

*
WRITE (NOUT,*)
WRITE (NOUT,*) ’Final results’
WRITE (NOUT,*)
WRITE (NOUT,99999) ’K =’, K, ’ ELAM =’, ELAM, ’ DELAM =’, DELAM
WRITE (NOUT,99998) ’HMAX(1,M-1) =’, HMAX(1,M-1),

+ ’ HMAX(1,M) =’, HMAX(1,M)
STOP

*
99999 FORMAT (1X,A,I3,A,F12.3,A,e12.2)
99998 FORMAT (1X,A,F10.3,A,F10.3)

END
*

SUBROUTINE COEFF(P,Q,DQDL,X,ELAM,JINT)
* .. Scalar Arguments ..

real DQDL, ELAM, P, Q, X
INTEGER JINT

* .. Executable Statements ..
P = 1.0e0
Q = ELAM - X - 2.0e0/(X*X)
DQDL = 1.0e0
RETURN
END

*
SUBROUTINE BDYVL(XL,XR,ELAM,YL,YR)

* .. Scalar Arguments ..
real ELAM, XL, XR

* .. Array Arguments ..
real YL(3), YR(3)

* .. Intrinsic Functions ..
INTRINSIC SQRT

* .. Executable Statements ..
YL(1) = XL
YL(2) = 2.0e0
YR(1) = 1.0e0
YR(2) = -SQRT(XR-ELAM)
RETURN
END

*
SUBROUTINE REPORT(X,V,JINT)

* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalar Arguments ..
real X
INTEGER JINT
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* .. Array Arguments ..
real V(3)

* .. Local Scalars ..
real PYP, R, SQRTB, Y

* .. External Functions ..
real X02AMF
EXTERNAL X02AMF

* .. Intrinsic Functions ..
INTRINSIC COS, EXP, LOG, SIN, SQRT

* .. Executable Statements ..
IF (JINT.EQ.0) THEN

WRITE (NOUT,*)
WRITE (NOUT,*) ’ Eigenfunction values’
WRITE (NOUT,*) ’ X Y PYP’

END IF
SQRTB = SQRT(V(1))

* Avoid underflow in call of EXP
IF (0.5e0*V(3).GE.LOG(X02AMF())) THEN

R = EXP(0.5e0*V(3))
ELSE

R = 0.0e0
END IF
PYP = R*SQRTB*COS(0.5e0*V(2))
Y = R/SQRTB*SIN(0.5e0*V(2))
WRITE (NOUT,99999) X, Y, PYP
RETURN

*
99999 FORMAT (1X,F10.3,1P,2F12.4)

END
*

SUBROUTINE MONIT(MAXIT,IFLAG,ELAM,FINFO)
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalar Arguments ..
real ELAM
INTEGER IFLAG, MAXIT

* .. Array Arguments ..
real FINFO(15)

* .. Local Scalars ..
INTEGER I

* .. Executable Statements ..
IF (MAXIT.EQ.-1) THEN

WRITE (NOUT,*)
WRITE (NOUT,*) ’Output from MONIT’

END IF
WRITE (NOUT,99999) MAXIT, IFLAG, ELAM, (FINFO(I),I=1,4)
RETURN

*
99999 FORMAT (1X,2I4,F10.3,2e12.2,2F8.1)

END

9.2 Program Data

None.
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9.3 Program Results

D02KEF Example Program Results

A singular problem

Eigenfunction values
X Y PYP

0.100 0.1239 2.4777
0.168 0.3429 3.9250
0.216 0.5527 4.7656
0.312 1.0703 5.8387
0.407 1.6381 5.9485
0.577 2.5042 3.7463
0.724 2.7923 -0.0126
0.908 2.2907 -5.3619
1.136 0.5209 -9.3928
1.451 -2.1519 -5.8026
1.587 -2.6671 -1.5792

30.000 0.0000 0.0000
29.097 0.0000 0.0000
28.753 0.0000 0.0000
28.384 0.0000 0.0000
28.114 0.0000 0.0000
27.825 0.0000 0.0000
27.518 0.0000 0.0000
27.204 0.0000 0.0000
26.834 0.0000 0.0000
26.529 0.0000 0.0000
26.215 0.0000 0.0000
25.844 0.0000 0.0000
25.546 0.0000 0.0000
25.208 0.0000 0.0000
24.892 0.0000 0.0000
24.569 0.0000 0.0000
24.175 0.0000 0.0000
23.851 0.0000 0.0000
23.482 0.0000 0.0000
23.174 0.0000 0.0000
22.806 0.0000 0.0000
22.486 0.0000 0.0000
22.098 0.0000 0.0000
21.759 0.0000 0.0000
21.351 0.0000 0.0001
20.995 -0.0001 0.0002
20.566 -0.0002 0.0005
20.191 -0.0005 0.0013
19.735 -0.0016 0.0035
19.334 -0.0037 0.0081
18.987 -0.0078 0.0161
18.529 -0.0196 0.0384
18.092 -0.0450 0.0832
17.691 -0.0925 0.1609
17.303 -0.1778 0.2898
16.903 -0.3332 0.5027
16.466 -0.6250 0.8540
15.931 -1.2335 1.4473
15.550 -1.8735 1.9097
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15.169 -2.6744 2.2636
14.771 -3.5979 2.2923
14.404 -4.3627 1.7713
14.072 -4.7897 0.6994
13.643 -4.6434 -1.5170
13.175 -3.2554 -4.3946
12.690 -0.5778 -6.2798
12.262 2.0321 -5.4444
11.871 3.5892 -2.1544
11.489 3.5453 2.4652
11.095 1.7261 6.4061
10.691 -1.1184 6.8904
10.299 -3.1686 2.9093
9.926 -3.1465 -3.0988
9.550 -1.0523 -7.4276
9.042 2.5418 -4.9033
8.538 2.7120 4.4439
8.041 -0.8508 7.9253
7.517 -3.0773 -0.9682
7.031 -0.3714 -8.4971
6.541 2.8684 -2.4575
6.041 1.1567 8.1340
5.521 -2.6813 3.4389
5.024 -1.2139 -8.2270
4.525 2.6005 -3.6521
4.035 1.0883 8.5529
3.536 -2.6508 2.8119
3.035 -0.5046 -9.2862
2.518 2.7330 0.2975
2.016 -0.5905 9.3484
1.587 -2.6714 -1.5826

Final results

K = 11 ELAM = 14.946 DELAM = 0.80E-03
HMAX(1,M-1) = -0.015 HMAX(1,M) = 0.000
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