
E04 – Minimizing or Maximizing a Function

E04KDF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

E04KDF is a comprehensive modified Newton algorithm for finding:

– an unconstrained minimum of a function of several variables

– a minimum of a function of several variables subject to fixed upper and/or lower bounds on the
variables.

First derivatives are required. The routine is intended for functions which have continuous first and
second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

2 Specification

SUBROUTINE E04KDF(N, FUNCT, MONIT, IPRINT, MAXCAL, ETA, XTOL,
1 DELTA, STEPMX, IBOUND, BL, BU, X, HESL, LH,
2 HESD, ISTATE, F, G, IW, LIW, W, LW, IFAIL)
INTEGER N, IPRINT, MAXCAL, IBOUND, LH, ISTATE(N),
1 IW(LIW), LIW, LW, IFAIL
real ETA, XTOL, DELTA, STEPMX, BL(N), BU(N), X(N),
1 HESL(LH), HESD(N), F, G(N), W(LW)
EXTERNAL FUNCT, MONIT

3 Description

This routine is applicable to problems of the form:

MinimizeF (x1, x2, . . . , xn) subject to lj ≤ xj ≤ uj, for j = 1, 2, . . . , n.

Special provision is made for unconstrained minimization (i.e., problems which actually have no bounds
on the xj), problems which have only non-negativity bounds, and problems in which l1 = l2 = . . . = ln
and u1 = u2 = . . . = un. It is possible to specify that a particular xj should be held constant. The
user must supply a starting point, and a subroutine FUNCT to calculate the value of F (x) and its first
derivatives ∂F

∂xj
at any point x.

A typical iteration starts at the current point x where nz (say) variables are free from their bounds. The
vector gz, whose elements are the derivatives of F (x) with respect to the free variables, is known. The
matrix of second derivatives with respect to the free variables, H , is estimated by finite differences. (Note
that gz and H are both of dimension nz.) The equations

(H + E)pz = −gz

are solved to give a search direction pz . (The matrix E is chosen so that H + E is positive-definite.) pz

is then expanded to an n-vector p by the insertion of appropriate zero elements, α is found such that
F (x+αp) is approximately a minimum (subject to the fixed bounds) with respect to α; and x is replaced
by x+ αp. (If a saddle point is found, a special search is carried out so as to move away from the saddle
point.) If any variable actually reaches a bound, it is fixed and nz is reduced for the next iteration.

There are two sets of convergence criteria – a weaker and a stronger. Whenever the weaker criteria are
satisfied, the Lagrange-multipliers are estimated for all the active constraints. If any Lagrange-multiplier
estimate is significantly negative, then one of the variables associated with a negative Lagrange-multiplier
estimate is released from its bound and the next search direction is computed in the extended subspace
(i.e., nz is increased). Otherwise minimization continues in the current subspace until the stronger
convergence criteria are satisfied. If at this point there are no negative or near-zero Lagrange-multiplier
estimates, the process is terminated.

[NP3390/19/pdf] E04KDF.1

E04KDF E04 – Minimizing or Maximizing a Function

If the user specifies that the problem is unconstrained, E04KDF sets the lj to −106 and the uj to 106.
Thus, provided that the problem has been sensibly scaled, no bounds will be encountered during the
minimization process and E04KDF will act as an unconstrained minimization algorithm.

4 References

[1] Gill P E and Murray W (1973) Safeguarded steplength algorithms for optimization using descent
methods NPL Report NAC 37 National Physical Laboratory

[2] Gill P E and Murray W (1974) Newton-type methods for unconstrained and linearly constrained
optimization Math. Program. 7 311–350

[3] Gill P E and Murray W (1976) Minimization subject to bounds on the variables NPL Report NAC
72 National Physical Laboratory

5 Parameters

1: N — INTEGER Input

On entry: the number n of independent variables.

Constraint: N ≥ 1.

2: FUNCT — SUBROUTINE, supplied by the user. External Procedure

FUNCT must evaluate the function F (x) and its first derivatives ∂F
∂xj

at a specified point. (However,
if the user does not wish to calculate F or its first derivatives at a particular x, there is the option
of setting a parameter to cause E04KDF to terminate immediately.)

Its specification is:

SUBROUTINE FUNCT(IFLAG, N, XC, FC, GC, IW, LIW, W, LW)
INTEGER IFLAG, N, IW(LIW), LIW, LW
real XC(N), FC, GC(N), W(LW)

1: IFLAG — INTEGER Input/Output
On entry: IFLAG will have been set to 1 or 2. The value 1 indicates that only the first
derivatives of F need be supplied, and the value 2 indicates that both F itself and its first
derivatives must be calculated.

On exit: if it is not possible to evaluate F or its first derivatives at the point given in XC (or
if it is wished to stop the calculations for any other reason) the user should reset IFLAG to
a negative number and return control to E04KDF. E04KDF will then terminate immediately,
with IFAIL set to the user’s setting of IFLAG.

2: N — INTEGER Input
On entry: the number n of variables.

3: XC(N) — real array Input
On entry: the point x at which the ∂F

∂xj
, or F and the ∂F

∂xj
, are required.

4: FC — real Output
On exit: unless IFLAG = 1 on entry or IFLAG is reset, FUNCT must set FC to the value of
the objective function F at the current point x.

5: GC(N) — real array Output
On exit: unless FUNCT resets IFLAG, it must set GC(j) to the value of the first derivative
∂F
∂xj

at the point x, for j = 1, 2, . . . , n.

E04KDF.2 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04KDF

6: IW(LIW) — INTEGER array Workspace
7: LIW — INTEGER Input
8: W(LW) — real array Workspace
9: LW — INTEGER Input

FUNCT is called with the same parameters IW, LIW, W, LW as for E04KDF. They are
present so that, when other library routines require the solution of a minimization subproblem,
constants needed for the function evaluation can be passed through IW and W. Similarly,
users could use elements 3, 4, . . . ,LIW of IW and elements from max(8,7×N+N× (N−1)/2) +
1 onwards of W for passing quantities to FUNCT from the (sub)program which calls E04KDF.
However, because of the danger of mistakes in partitioning, it is recommended that users should
pass information to FUNCT via COMMON and not use IW or W at all. In any case users
must not change the first 2 elements of IW or the first max(8,7× N + N × (N−1)/2) elements
of W.

Note. FUNCT should be tested separately before being used in conjunction with E04KDF.
FUNCT must be declared as EXTERNAL in the (sub)program from which E04KDF is called.
Parameters denoted as Input must not be changed by this procedure.

3: MONIT — SUBROUTINE, supplied by the user. External Procedure

If IPRINT ≥ 0, the user must supply a subroutine MONIT which is suitable for monitoring the
minimization process. MONIT must not change the values of any of its parameters.

If IPRINT < 0, a routine MONIT with the correct parameter list must still be supplied, although
it will not be called.

Its specification is:

SUBROUTINE MONIT(N, XC, FC, GC, ISTATE, GPJNRM, COND, POSDEF,
1 NITER, NF, IW, LIW, W, LW)
INTEGER N, ISTATE(N), NITER, NF, IW(LIW), LIW, LW
real XC(N), FC, GC(N), GPJNRM, COND, W(LW)
LOGICAL POSDEF

1: N — INTEGER Input
On entry: the number n of variables.

2: XC(N) — real array Input
On entry: the co-ordinates of the current point x.

3: FC — real Input
On entry: the value of F (x) at the current point x.

4: GC(N) — real array Input
On entry: the value of ∂F

∂xj
at the current point x, for j = 1, 2, . . . , n.

5: ISTATE(N) — INTEGER array Input
On entry: information about which variables are currently fixed on their bounds and which
are free.

If ISTATE(j) is negative, xj is currently:

– fixed on its upper bound if ISTATE(j)} = −1
– fixed on its lower bound if ISTATE(j) = −2
– effectively a constant (i.e., lj = uj) if ISTATE(j) = −3
If ISTATE(j) is positive, its value gives the position of xj in the sequence of free variables.

[NP3390/19/pdf] E04KDF.3

E04KDF E04 – Minimizing or Maximizing a Function

6: GPJNRM — real Input
On entry: the Euclidean norm of the current projected gradient vector gz.

7: COND — real Input
On entry: the ratio of the largest to the smallest elements of the diagonal factor D of the
approximated projected Hessian matrix. This quantity is usually a good estimate of the
condition number of the projected Hessian matrix. (If no variables are currently free, COND
is set to zero.)

8: POSDEF — LOGICAL Input
On entry: POSDEF specifies .TRUE. or .FALSE. according to whether or not the
approximation to the second derivative matrix for the current subspace, H , is positive-definite.

9: NITER — INTEGER Input
On entry: the number of iterations (as outlined in Section 3) which have been performed by
E04KDF so far.

10: NF — INTEGER Input
On entry: the number of evaluations of F (x) so far, i.e., the number of calls of FUNCT with
IFLAG set to 2. Each such call of FUNCT also calculates the first derivatives of F . (In
addition to these calls monitored by NF, FUNCT is called with IFLAG set to 1 not more than
N times per iteration.)

11: IW(LIW) — INTEGER array Workspace
12: LIW — INTEGER Input
13: W(LW) — real array Workspace
14: LW — INTEGER Input

As in FUNCT, these parameters correspond to the parameters IW, LIW, W, LW of E04KDF.
They are included in MONIT’s parameter list primarily for when E04KDF is called by other
library routines.

The user should normally print FC, GPJNRM and COND to be able to compare the quantities
mentioned in Section 7. It is usually helpful to examine XC, POSDEF and NF too.
MONIT must be declared as EXTERNAL in the (sub)program from which E04KDF is called.
Parameters denoted as Input must not be changed by this procedure.

4: IPRINT — INTEGER Input

On entry: the frequency with which MONIT is to be called. If IPRINT > 0, MONIT is called once
every IPRINT iterations and just before exit from E04KDF. If IPRINT = 0, MONIT is just called
at the final point. If IPRINT < 0, MONIT is not called at all.

IPRINT should normally be set to a small positive number.

Suggested value: IPRINT = 1.

5: MAXCAL — INTEGER Input

On entry: the maximum permitted number of evaluations of F (x), i.e., the maximum permitted
number of calls of FUNCT with IFLAG set to 2. It should be borne in mind that, in addition to
the calls of FUNCT which are limited directly by MAXCAL, there will be calls of FUNCT (with
IFLAG set to 1) to evaluate only first derivatives.

Suggested value: MAXCAL = 50 × N.

Constraint: MAXCAL ≥ 1.

E04KDF.4 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04KDF

6: ETA — real Input

On entry: every iteration of E04KDF involves a linear minimization (i.e., minimization of F (x+αp)
with respect to α). ETA specifies how accurately these linear minimizations are to be performed.
The minimum with respect to α will be located more accurately for small values of ETA (say 0.01)
than large values (say 0.9).

Although accurate linear minimizations will generally reduce the number of iterations (and hence
the number of calls of FUNCT to estimate the second derivatives), they will tend to increase the
number of calls of FUNCT needed for each linear minimization. On balance, it is usually efficient
to perform a low accuracy linear minimization when n is small and a high accuracy minimization
when n is large.

Suggested value:

ETA = 0.5 if 1 < n < 10,
ETA = 0.1 if 10 ≤ n ≤ 20,
ETA = 0.01 if n > 20.

If N = 1, ETA should be set to 0.0 (also when the problem is effectively 1-dimensional even though
n > 1; i.e., if for all except one of the variables the lower and upper bounds are equal).

Constraint: 0.0 ≤ ETA < 1.0.

7: XTOL — real Input

On entry: the accuracy in x to which the solution is required.

If xtrue is the true value of x at the minimum, then xsol, the estimated position prior to a normal

exit, is such that ‖xsol − xtrue‖ < XTOL × (1.0 + ‖xtrue‖) where ‖y‖ =

√√√√
n∑

j=1

y2
j . For example, if

the elements of xsol are not much larger than 1.0 in modulus, and if XTOL is set to 10−5, then xsol

is usually accurate to about 5 decimal places. (For further details see Section 7.)

If the problem is scaled as described in Section 8.2 and ε is the machine precision, then
√

ε is
probably the smallest reasonable choice for XTOL. This is because, normally, to machine accuracy,
F (x +

√
εej) = F (x), for any j where ej is the jth column of the identity matrix. If the user sets

XTOL to 0.0 (or any positive value less than ε), E04KDF will use 10.0×
√

ε instead of XTOL.

Suggested value: XTOL = 0.0.

Constraint: XTOL ≥ 0.0.

8: DELTA — real Input

On entry: the differencing interval to be used for approximating the second derivatives of F (x).
Thus, for the finite difference approximations, the first derivatives of F (x) are evaluated at points
which are DELTA apart. If ε is the machine precision, then

√
ε will usually be a suitable setting

for DELTA. If the user sets DELTA to 0.0 (or to any positive value less than ε), E04KDF will
automatically use

√
ε as the differencing interval.

Suggested value: DELTA = 0.0.

Constraint: DELTA ≥ 0.0.

9: STEPMX — real Input

On entry: an estimate of the Euclidean distance between the solution and the starting point supplied
by the user. (For maximum efficiency a slight overestimate is preferable.) E04KDF will ensure that,
for each iteration, √√√√

n∑
j=1

[
x

(k)
j − x

(k−1)
j

]2

≤ STEPMX,

[NP3390/19/pdf] E04KDF.5

E04KDF E04 – Minimizing or Maximizing a Function

where k is the iteration number. Thus, if the problem has more than one solution, E04KDF is most
likely to find the one nearest to the starting point. On difficult problems, a realistic choice can
prevent the sequence of x(k) entering a region where the problem is ill-behaved and can also help to
avoid possible overflow in the evaluation of F (x). However an underestimate of STEPMX can lead
to inefficiency.

Suggested value: STEPMX = 100000.0.

Constraint: STEPMX ≥ XTOL.

10: IBOUND — INTEGER Input

On entry: indicates whether the problem is unconstrained or bounded. If there are bounds on the
variables, IBOUND can be used to indicate whether the facility for dealing with bounds of special
forms is to be used. It must be set to one of the following values:

IBOUND = 0

if the variables are bounded and the user will be supplying all the lj and uj individually.
IBOUND = 1

if the problem is unconstrained.
IBOUND = 2

if the variables are bounded, but all the bounds are of the form 0 ≤ xj .
IBOUND = 3

if all the variables are bounded, and l1 = l2 = . . . = ln and u1 = u2 = . . . = un.
IBOUND = 4

if the problem is unconstrained. (The IBOUND = 4 option is provided for consistency with
other routines. In E04KDF it produces the same effect as IBOUND = 1.)

Constraint: 0 ≤ IBOUND ≤ 4.

11: BL(N) — real array Input/Output

On entry: the fixed lower bounds lj .

If IBOUND is set to 0, the user must set BL(j) to lj , for j = 1, 2, . . . , n. (If a lower bound is not
specified for any xj , the corresponding BL(j) should be set to a large negative number, e.g., −106.)

If IBOUND is set to 3, the user must set BL(1) to l1; E04KDF will then set the remaining elements
of BL equal to BL(1).

If IBOUND is set to 1, 2 or 4, BL will be initialised by E04KDF.

On exit: the lower bounds actually used by E04KDF, e.g., If IBOUND = 2, BL(1) = BL(2) = . . .
= BL(n) = 0.0.

12: BU(N) — real array Input/Output

On entry: the fixed upper bounds uj.

If IBOUND is set to 0, the user must set BU(j) to uj , for j = 1, 2, . . . , n. (If an upper bound is not
specified for any variable, the corresponding BU(j) should be set to a large positive number, e.g.,
106.)

If IBOUND is set to 3, the user must set BU(1) to u1; E04KDF will then set the remaining elements
of BU equal to BU(1).

If IBOUND is set to 1, 2 or 4, BU will be initialised by E04KDF.

On exit: the upper bounds actually used by E04KDF, e.g., if IBOUND = 2, BU(1) = BU(2) = . . .
= BU(n) = 106.

E04KDF.6 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04KDF

13: X(N) — real array Input/Output

On entry: X(j must be set to a guess at the jth component of the position of the minimum, for
j = 1, 2, . . . , n.

On exit: the final point x(k). Thus, if IFAIL = 0 on exit, X(j) is the jth component of the estimated
position of the minimum.

14: HESL(LH) — real array Output

See description of HESD below.

15: LH — INTEGER Input

On entry: the length of HESL as declared in the (sub)program from which E04KDF is called.

Constraint: LH ≥ max(N×(N−1)/2,1).

16: HESD(N) — real array Output

On exit: during the determination of a direction pz (see Section 3), H + E is decomposed into the
product LDLT , where L is a unit lower triangular matrix and D is a diagonal matrix. (The matrices
H , E, L and D are all of dimension nz , where nz is the number of variables free from their bounds.
H consists of those rows and columns of the full estimated second derivative matrix which relate to
free variables. E is chosen so that H + E is positive-definite.)

HESL and HESD are used to store the factors L and D. The elements of the strict lower triangle of
L are stored row by row in the first nz(nz −1)/2 positions of HESL. The diagonal elements of D are
stored in the first nz positions of HESD. In the last factorization before a normal exit, the matrix E
will be zero, so that HESL and HESD will contain, on exit, the factors of the final estimated second
derivative matrix H . The elements of HESD are useful for deciding whether to accept the results
produced by E04KDF (see Section 7).

17: ISTATE(N) — INTEGER array Output

On exit: information about which variables are currently on their bounds and which are free. If
ISTATE(j) is:

− equal to −1, xj is fixed on its upper bound

− equal to −2, xj is fixed on its lower bound

− equal to −3, xj is effectively a constant (i.e., lj = uj)

− positive, ISTATE(j) gives the position of xj in the sequence of free variables.

18: F — real Output

On exit: the function value at the final point given in X.

19: G(N) — real array Output

On exit: the first derivative vector corresponding to the final point given in X. The components of
G corresponding to free variables should normally be close to zero.

20: IW(LIW) — INTEGER array Workspace
21: LIW — INTEGER Input

On entry: the length of IW as declared in the (sub)program from which E04KDF is called.

Constraint: LIW ≥ 2.

22: W(LW) — real array Workspace
23: LW — INTEGER Input

On entry: the length of W as declared in the (sub)program from which E04KDF is called.

Constraint: LW ≥ max(7×N+N×(N−1)/2,8).

[NP3390/19/pdf] E04KDF.7

E04KDF E04 – Minimizing or Maximizing a Function

24: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL �= 0 on exit,
users are recommended to set IFAIL to −1 before entry. It is then essential to test the value of
IFAIL on exit. To suppress the output of an error message when soft failure occurs, set IFAIL to 1.

6 Error Indicators and Warnings

Errors or warnings specified by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04KDF because the user has set IFLAG negative
in FUNCT. The value of IFAIL will be the same as the user’s setting of IFLAG.

IFAIL = 1

On entry, N < 1,
or MAXCAL < 1,
or ETA < 0.0,
or ETA ≥ 1.0,
or XTOL < 0.0,
or DELTA < 0.0,
or STEPMX < XTOL,
or IBOUND < 0,
or IBOUND > 4,
or BL(j) > {BU}(j) for some j if IBOUND = 0,
or BL(1) > BU(1) if IBOUND = 3,
or LH < max(1,N×(N−1)/2),
or LIW < 2,
or LW < max(8,7×N+N×(N−1)/2).

(Note that if the user has set XTOL or DELTA to 0.0, E04KDF uses the default values and
continues without failing.) When this exit occurs, no values will have been assigned to F or to the
elements of HESL, HESD or G.

IFAIL = 2

There have been MAXCAL function evaluations. If steady reductions in F (x) were monitored up
to the point where this exit occurred, then the exit probably occurred simply because MAXCAL
was set too small, so the calculations should be restarted from the final point held in X. This exit
may also indicate that F (x) has no minimum.

IFAIL = 3

The conditions for a minimum have not all been met, but a lower point could not be found.

Provided that, on exit, the first derivatives of F (x) with respect to the free variables are sufficiently
small, and that the estimated condition number of the second derivative matrix is not too large,
this error exit may simply mean that, although it has not been possible to satisfy the specified
requirements, the algorithm has in fact found the minimum as far as the accuracy of the machine
permits. Such a situation can arise, for instance, if XTOL has been set so small that rounding
errors in the evaluation of F (x) or its derivatives make it impossible to satisfy the convergence
conditions.

If the estimated condition number of the second derivative matrix at the final point is large, it
could be that the final point is a minimum, but that the smallest eigenvalue of the Hessian matrix
is so close to zero that it is not possible to recognise the point as a minimum.

E04KDF.8 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04KDF

IFAIL = 4

Not used. (This is done to make the significance of IFAIL = 5 similar for E04KDF and E04LBF.)

IFAIL = 5

All the Lagrange-multiplier estimates which are not indisputably positive lie relatively close to
zero, but it is impossible either to continue minimizing on the current subspace or to find a feasible
lower point by releasing and perturbing any of the fixed variables. The user should investigate as
for IFAIL = 3.

The values IFAIL = 2, 3 and 5 may also be caused by mistakes in FUNCT, by the formulation of the
problem or by an awkward function. If there are no such mistakes, it is worth restarting the calculations
from a different starting point (not the point at which the failure occurred) in order to avoid the region
which caused the failure.

7 Accuracy

A successful exit (IFAIL = 0) is made from E04KDF when H(k) is positive-definite and when (B1, B2
and B3) or B4 hold, where

B1 ≡ α(k) × ‖p(k)‖ < (XTOL +
√

ε)× (1.0 + ‖x(k)‖)
B2 ≡ |F (k) − F (k−1)| < (XTOL2 + ε)× (1.0 + |F (k)|)
B3 ≡ ‖g(k)

z ‖ < (ε
1
3 +XTOL)× (1.0 + |F (k)|)

B4 ≡ ‖g(k)
z ‖ < 0.01×

√
ε.

(Quantities with superscript k are the values at the kth iteration of the quantities mentioned in Section
3. ε is the machine precision and ‖.‖ denotes the Euclidean norm.)

If IFAIL = 0, then the vector in X on exit, xsol, is almost certainly an estimate of the position of the
minimum, xtrue, to the accuracy specified by XTOL.

If IFAIL = 3 or 5, xsol may still be a good estimate of xtrue, but the following checks should be made.
Let the largest of the first nz elements of HESD be HESD(b), let the smallest be HESD(s), and define k
= HESD(b)/HESD(s). The scalar k is usually a good estimate of the condition number of the projected
Hessian matrix at xsol. If

(1) the sequence {F (x(k))} converges to F (xsol) at a superlinear or fast linear rate,
(2) ‖gz(xsol)‖2 < 10.0× ε, and
(3) k < 1.0/‖gz(xsol)‖,

then it is almost certain that xsol is a close approximation to the position of a minimum. When (2) is
true, then usually F (xsol) is a close approximation to F (xtrue). The quantities needed for these checks
are all available via MONIT; in particular the value of COND in the last call of MONIT before exit gives
k.

Further suggestions about confirmation of a computed solution are given in the Chapter Introduction.

8 Further Comments
8.1 Timing

The number of iterations required depends on the number of variables, the behaviour of F (x), the accuracy
demanded and the distance of the starting point from the solution. The number of multiplications
performed in an iteration of E04KDF is n3

z

6 + O(n2
z). In addition, each iteration makes nz calls of

FUNCT (with IFLAG set to 1) in approximating the projected Hessian matrix, and at least one other
call of FUNCT (with IFLAG set to 2). So, unless F (x) and its first derivatives can be evaluated very
quickly, the run time will be dominated by the time spent in FUNCT.

8.2 Scaling

Ideally, the problem should be scaled so that, at the solution, F (x) and the corresponding values of xj

are each in the range (−1,+1), and so that at points one unit away from the solution, F (x) differs from

[NP3390/19/pdf] E04KDF.9

E04KDF E04 – Minimizing or Maximizing a Function

its value at the solution by approximately one unit. This will usually imply that the Hessian matrix at
the solution is well-conditioned. It is unlikely that the user will be able to follow these recommendations
very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the difficulty of the
minimization problem, so that E04KDF will take less computer time.

8.3 Unconstrained Minimization

If a problem is genuinely unconstrained and has been scaled sensibly, the following points apply:

(a) nz will always be n,
(b) HESL and HESD will be factors of the full estimated second derivative matrix with elements stored

in the natural order,
(c) the elements of g should all be close to zero at the final point,
(d) the values of the ISTATE(j) given by MONIT and on exit from E04KDF are unlikely to be of

interest (unless they are negative, which would indicate that the modulus of one of the xj has
reached 106 for some reason),

(e) MONIT’s parameter GPJNRM simply gives the norm of the first derivative vector.

So the following routine (in which partitions of extended workspace arrays are used as BL, BU and
ISTATE) could be used for unconstrained problems:

SUBROUTINE UNCKDF(N,FUNCT,MONIT,IPRINT,MAXCAL,ETA,XTOL,DELTA,
* STEPMX,X,HESL,LH,HESD,F,G,IWORK,LIWORK,WORK,
* LWORK,IFAIL)

C
C A ROUTINE TO APPLY E04KDF TO UNCONSTRAINED PROBLEMS.
C
C THE REAL ARRAY WORK MUST BE OF DIMENSION AT LEAST
C (9*N + MAX(1, N*(N-1)/2)). ITS FIRST 7*N + MAX(1, N*(N-1)/2)
C ELEMENTS WILL BE USED BY E04KDF AS THE ARRAY W. ITS LAST
C 2*N ELEMENTS WILL BE USED AS THE ARRAYS BL AND BU.
C
C THE INTEGER ARRAY IWORK MUST BE OF DIMENSION AT LEAST (N+2)
C ITS FIRST 2 ELEMENTS WILL BE USED BY E04KDF AS THE ARRAY IW.
C ITS LAST N ELEMENTS WILL BE USED AS THE ARRAY ISTATE.
C
C LIWORK AND LWORK MUST BE SET TO THE ACTUAL LENGTHS OF IWORK
C AND WORK RESPECTIVELY, AS DECLARED IN THE CALLING SEGMENT.
C
C OTHER PARAMETERS ARE AS FOR E04KDF.
C

C .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)

C .. Scalar Arguments ..
real DELTA, ETA, F, STEPMX, XTOL
INTEGER IFAIL, IPRINT, LH, LIWORK, LWORK, MAXCAL, N

C .. Array Arguments ..
real G(N), HESD(N), HESL(LH), WORK(LWORK), X(N)
INTEGER IWORK(LIWORK)

C .. Subroutine Arguments ..
EXTERNAL FUNCT, MONIT

C .. Local Scalars ..
INTEGER IBOUND, J, JBL, JBU, NH
LOGICAL TOOBIG

C .. External Subroutines ..
EXTERNAL E04KDF

E04KDF.10 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04KDF

C .. Executable Statements ..
C CHECK THAT SUFFICIENT WORKSPACE HAS BEEN SUPPLIED

NH = N*(N-1)/2
IF (NH.EQ.0) NH = 1
IF (LWORK.LT.9*N+NH .OR. LIWORK.LT.N+2) THEN

WRITE (NOUT,FMT=99999)
STOP

END IF
C JBL AND JBU SPECIFY THE PARTS OF WORK USED AS BL AND BU

JBL = 7*N + NH + 1
JBU = JBL + N

C SPECIFY THAT THE PROBLEM IS UNCONSTRAINED
IBOUND = 4
CALL E04KDF(N,FUNCT,MONIT,IPRINT,MAXCAL,ETA,XTOL,DELTA,STEPMX,

* IBOUND,WORK(JBL),WORK(JBU),X,HESL,LH,HESD,IWORK(3),F,
* G,IWORK,LIWORK,WORK,LWORK,IFAIL)

C CHECK THE PART OF IWORK WHICH WAS USED AS ISTATE IN CASE
C THE MODULUS OF SOME X(J) HAS REACHED E+6

TOOBIG = .FALSE.
DO 20 J = 1, N

IF (IWORK(2+J).LT.0) TOOBIG = .TRUE.
20 CONTINUE

IF (.NOT. TOOBIG) RETURN
WRITE (NOUT,FMT=99998)
STOP

C
99999 FORMAT (’ ***** INSUFFICIENT WORKSPACE HAS BEEN SUPPLIED *****’)
99998 FORMAT (’ ***** A VARIABLE HAS REACHED E+6 IN MODULUS - NO UNCON’,

* ’STRAINED MINIMUM HAS BEEN FOUND *****’)
END

9 Example

A program to minimize

F = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4

subject to the bounds
1 ≤ x1 ≤ 3

−2 ≤ x2 ≤ 0
1 ≤ x4 ≤ 3,

starting from the initial guess (3, −1, 0, 1). Before calling E04KDF, the program calls E04HCF to check
the first derivatives calculated by FUNCT.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* E04KDF Example Program Text.
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER N, LH, LIW, LW
PARAMETER (N=4,LH=N*(N-1)/2,LIW=2,LW=7*N+N*(N-1)/2)
INTEGER NOUT
PARAMETER (NOUT=6)

[NP3390/19/pdf] E04KDF.11

E04KDF E04 – Minimizing or Maximizing a Function

* .. Local Scalars ..
real DELTA, ETA, F, STEPMX, XTOL
INTEGER IBOUND, IFAIL, IPRINT, J, MAXCAL

* .. Local Arrays ..
real BL(N), BU(N), G(N), HESD(N), HESL(LH), W(LW),

+ X(N)
INTEGER ISTATE(N), IW(LIW)

* .. External Subroutines ..
EXTERNAL E04HCF, E04KDF, FUNCT, MONIT

* .. Executable Statements ..
WRITE (NOUT,*) ’E04KDF Example Program Results’

* Check FUNCT by calling E04HCF at an arbitrary point. Since E04HCF
* only checks the derivatives calculated when IFLAG = 2, a separate
* program should be run before using E04HCF or E04KDF to check that
* FUNCT gives the same values for the GC(J) when IFLAG is set to 1
* as when IFLAG is set to 2.

X(1) = 1.46e0
X(2) = -0.82e0
X(3) = 0.57e0
X(4) = 1.21e0
IFAIL = 0

*
CALL E04HCF(N,FUNCT,X,F,G,IW,LIW,W,LW,IFAIL)

*
* Continue setting parameters for E04KDF
* * Set IPRINT to 1 to obtain output from MONIT at each iteration *

IPRINT = -1
MAXCAL = 50*N
ETA = 0.5e0

* Set XTOL and DELTA to zero so that E04KDF will use the default
* values

XTOL = 0.0e0
DELTA = 0.0e0

* We estimate that the minimum will be within 4 units of the
* starting point

STEPMX = 4.0e0
IBOUND = 0
BL(1) = 1.0e0
BU(1) = 3.0e0
BL(2) = -2.0e0
BU(2) = 0.0e0

* X(3) is not bounded, so we set BL(3) to a large negative
* number and BU(3) to a large positive number

BL(3) = -1.0e6
BU(3) = 1.0e6
BL(4) = 1.0e0
BU(4) = 3.0e0

* Set up starting point
X(1) = 3.0e0
X(2) = -1.0e0
X(3) = 0.0e0
X(4) = 1.0e0
IFAIL = 1

*
CALL E04KDF(N,FUNCT,MONIT,IPRINT,MAXCAL,ETA,XTOL,DELTA,STEPMX,

+ IBOUND,BL,BU,X,HESL,LH,HESD,ISTATE,F,G,IW,LIW,W,LW,
+ IFAIL)

*

E04KDF.12 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04KDF

IF (IFAIL.NE.0) THEN
WRITE (NOUT,*)
WRITE (NOUT,99999) ’Error exit type’, IFAIL,

+ ’ - see routine document’
END IF
IF (IFAIL.NE.1) THEN

WRITE (NOUT,*)
WRITE (NOUT,99998) ’Function value on exit is ’, F
WRITE (NOUT,99998) ’at the point’, (X(J),J=1,N)
WRITE (NOUT,*)

+ ’The corresponding (machine dependent) gradient is’
WRITE (NOUT,99997) (G(J),J=1,N)
WRITE (NOUT,99996) ’ISTATE contains’, (ISTATE(J),J=1,N)
WRITE (NOUT,99995) ’and HESD contains’, (HESD(J),J=1,N)

END IF
STOP

*
99999 FORMAT (1X,A,I3,A)
99998 FORMAT (1X,A,4F12.4)
99997 FORMAT (24X,1P,4e12.3)
99996 FORMAT (1X,A,4I5)
99995 FORMAT (1X,A,4e12.4)

END
*

SUBROUTINE FUNCT(IFLAG,N,XC,FC,GC,IW,LIW,W,LW)
* Routine to evaluate objective function and its 1st derivatives.
* A COMMON variable could be updated here to count the number of
* calls of FUNCT with IFLAG = 1 (since NF in MONIT only counts
* calls with IFLAG = 2)
* .. Scalar Arguments ..

real FC
INTEGER IFLAG, LIW, LW, N

* .. Array Arguments ..
real GC(N), W(LW), XC(N)
INTEGER IW(LIW)

* .. Executable Statements ..
IF (IFLAG.NE.1) FC = (XC(1)+10.0e0*XC(2))**2 + 5.0e0*(XC(3)-XC(4))

+ **2 + (XC(2)-2.0e0*XC(3))**4 + 10.0e0*(XC(1)
+ -XC(4))**4
GC(1) = 2.0e0*(XC(1)+10.0e0*XC(2)) + 40.0e0*(XC(1)-XC(4))**3
GC(2) = 20.0e0*(XC(1)+10.0e0*XC(2)) + 4.0e0*(XC(2)-2.0e0*XC(3))**3
GC(3) = 10.0e0*(XC(3)-XC(4)) - 8.0e0*(XC(2)-2.0e0*XC(3))**3
GC(4) = 10.0e0*(XC(4)-XC(3)) - 40.0e0*(XC(1)-XC(4))**3
RETURN
END

*
SUBROUTINE MONIT(N,XC,FC,GC,ISTATE,GPJNRM,COND,POSDEF,NITER,NF,IW,

+ LIW,W,LW)
* Monitoring routine
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalar Arguments ..
real COND, FC, GPJNRM
INTEGER LIW, LW, N, NF, NITER
LOGICAL POSDEF

[NP3390/19/pdf] E04KDF.13

E04KDF E04 – Minimizing or Maximizing a Function

* .. Array Arguments ..
real GC(N), W(LW), XC(N)
INTEGER ISTATE(N), IW(LIW)

* .. Local Scalars ..
INTEGER ISJ, J

* .. Executable Statements ..
WRITE (NOUT,*)
WRITE (NOUT,*)

+’ Itn Fn evals Fn value Norm of proj g
+radient’
WRITE (NOUT,99999) NITER, NF, FC, GPJNRM
WRITE (NOUT,*)
WRITE (NOUT,*)

+ ’ J X(J) G(J) Status’
DO 20 J = 1, N

ISJ = ISTATE(J)
IF (ISJ.GT.0) THEN

WRITE (NOUT,99998) J, XC(J), GC(J), ’ Free’
ELSE IF (ISJ.EQ.-1) THEN

WRITE (NOUT,99998) J, XC(J), GC(J), ’ Upper Bound’
ELSE IF (ISJ.EQ.-2) THEN

WRITE (NOUT,99998) J, XC(J), GC(J), ’ Lower Bound’
ELSE IF (ISJ.EQ.-3) THEN

WRITE (NOUT,99998) J, XC(J), GC(J), ’ Constant’
END IF

20 CONTINUE
IF (COND.NE.0.0e0) THEN

IF (COND.GT.1.0e6) THEN
WRITE (NOUT,*)
WRITE (NOUT,*)

+’Estimated condition number of projected Hessian is more than 1.0E
++6’

ELSE
WRITE (NOUT,*)
WRITE (NOUT,99997)

+ ’Estimated condition number of projected Hessian = ’, COND
END IF
IF (.NOT. POSDEF) THEN

* The following statement is included so that this MONIT
* can be used in conjunction with either of the routines
* E04KDF or E04LBF

WRITE (NOUT,*)
WRITE (NOUT,*)

+ ’Projected Hessian matrix is not positive definite’
END IF
RETURN

END IF
*
99999 FORMAT (1X,I3,6X,I5,2(6X,1P,e20.4))
99998 FORMAT (1X,I2,1X,1P,2e20.4,A)
99997 FORMAT (1X,A,1P,e10.2)

END

9.2 Program Data

None.

E04KDF.14 [NP3390/19/pdf]

E04 – Minimizing or Maximizing a Function E04KDF

9.3 Program Results

E04KDF Example Program Results

Error exit type 3 - see routine document

Function value on exit is 2.4338
at the point 1.0000 -0.0852 0.4093 1.0000
The corresponding (machine dependent) gradient is

2.953E-01 -5.872E-10 1.177E-09 5.907E+00
ISTATE contains -2 1 2 -2
and HESD contains 0.2098E+03 0.4738E+02 0.4552E+02 0.0000E+00

[NP3390/19/pdf] E04KDF.15 (last)

