
F01 – Matrix Factorizations

F01BSF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

F01BSF factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when
a matrix of the same sparsity pattern was factorized.

2 Specification

SUBROUTINE F01BSF(N, NZ, A, LICN, IVECT, JVECT, ICN, IKEEP, IW, W,
1 GROW, ETA, RPMIN, ABORT, IDISP, IFAIL)
INTEGER N, NZ, LICN, IVECT(NZ), JVECT(NZ), ICN(LICN),
1 IKEEP(5∗N), IW(8∗N), IDISP(2), IFAIL
real A(LICN), W(N), ETA, RPMIN
LOGICAL GROW, ABORT

3 Description

This routine accepts as input a real sparse matrix of the same sparsity pattern as a matrix previously
factorized by a call of F01BRF. It first applies to the matrix the same permutations as were used by
F01BRF, both for permutation to block triangular form and for pivoting, and then performs Gaussian
elimination to obtain the LU factorization of the diagonal blocks.

Extensive data checks are made; duplicated non-zeros can be accumulated.

The factorization is intended to be used by F04AXF to solve sparse systems of linear equations Ax = b
or AT x = b.

F01BSF is much faster than F01BRF and in some applications it is expected that there will be many
calls of F01BSF for each call of F01BRF.

The method is fully described in Duff [1].

4 References

[1] Duff I S (1977) MA28 – a set of Fortran subroutines for sparse unsymmetric linear equations AERE
Report R8730 HMSO

5 Parameters

1: N — INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N > 0.

2: NZ — INTEGER Input

On entry: the number of non-zeros in the matrix A.

Constraint: NZ > 0.

3: A(LICN) — real array Input/Output

On entry: A(i), for i = 1, 2, . . . ,NZ must contain the non-zero elements of the sparse matrix A.
They can be in any order since the routine will reorder them.

On exit: the non-zero elements in the factorization. The array must not be changed by the user
between a call of this routine and a call of F04AXF.

[NP3390/19/pdf] F01BSF.1



F01BSF F01 – Matrix Factorizations

4: LICN — INTEGER Input

On entry: the dimension of the arrays A and ICN as declared in the (sub)program from which
F01BSF is called. It should have the same value as it had for F01BRF.

Constraint: LICN ≥ NZ.

5: IVECT(NZ) — INTEGER array Input
6: JVECT(NZ) — INTEGER array Input

On entry: IVECT(i) and JVECT(i), for i = 1, 2, . . . ,NZ must contain the row index and the column
index respectively of the non-zero element stored in A(i).

7: ICN(LICN) — INTEGER array Input

On entry: the same information as output by F01BRF. It must not be changed by the user between
a call of this routine and a call of F04AXF.

8: IKEEP(5∗N) — INTEGER array Input

On entry: the same indexing information about the factorization as output from F01BRF. It must
not be changed between a call of this routine and a call of F04AXF.

9: IW(8∗N) — INTEGER array Workspace

10: W(N) — real array Output

On exit: if GROW = .TRUE., W(1) contains an estimate (an upper bound) of the increase in
size of elements encountered during the factorization (see GROW); the rest of the array is used as
workspace.

If GROW = .FALSE., the array is not used.

11: GROW — LOGICAL Input

On entry: if GROW = .TRUE., then on exit W(1) contains an estimate (an upper bound) of the
increase in size of elements encountered during the factorization. If the matrix is well-scaled (see
Section 8), then a high value for W(1) indicates that the LU factorization may be inaccurate and
the user should be wary of the results and perhaps increase the parameter PIVOT for subsequent
runs (see Section 7).

12: ETA — real Input

On entry: the relative pivot threshold below which an error diagnostic is provoked and IFAIL is set
to 7. If ETA is greater than 1.0, then no check on pivot size is made.

Suggested value: ETA = 10−4.

13: RPMIN — real Output

On exit: if ETA is less than 1.0, then RPMIN gives the smallest ratio of the pivot to the largest
element in the row of the corresponding upper triangular factor thus monitoring the stability of the
factorization. If RPMIN is very small it may be advisable to perform a new factorization using
F01BRF.

14: ABORT — LOGICAL Input

On entry: if ABORT = .TRUE., the routine exits immediately (with IFAIL = 8) if it finds duplicate
elements in the input matrix. If ABORT = .FALSE., the routine proceeds using a value equal to
the sum of the duplicate elements. In either case details of each duplicate element are output on
the current advisory message unit (see X04ABF), unless suppressed by the value of IFAIL on entry.

Suggested value: ABORT = .TRUE..

15: IDISP(2) — INTEGER array Input

On entry: IDISP(1) and IDISP(2) must be unchanged since the previous call of F01BRF.

F01BSF.2 [NP3390/19/pdf]



F01 – Matrix Factorizations F01BSF

16: IFAIL — INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Chapter P01).

Before entry, IFAIL must be set to a value with the decimal expansion cba, where each of the decimal
digits c, b and a must have a value of 0 or 1.

a = 0 specifies hard failure, otherwise soft failure;
b = 0 suppresses error messages, otherwise error messages will be printed (see Section 6);
c = 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).

Unless the routine detects an error (see Section 6), IFAIL contains 0 on exit.

6 Error Indicators and Warnings

For each error, an explanatory error message is output on the current error message unit (as defined by
X04AAF), unless suppressed by the value of IFAIL on entry.

Errors detected by the routine:

IFAIL = 1

On entry, N ≤ 0.

IFAIL = 2

On entry, NZ ≤ 0.

IFAIL = 3

On entry, LICN < NZ.

IFAIL = 4

On entry, an element of the input matrix has a row or column index (i.e., an element of IVECT
or JVECT) outside the range 1 to N.

IFAIL = 5

The input matrix is incompatible with the matrix factorized by the previous call of F01BRF (see
Section 8).

IFAIL = 6

The input matrix is numerically singular.

IFAIL = 7

A very small pivot has been detected (see Section 5, ETA). The factorization has been completed
but is potentially unstable.

IFAIL = 8

Duplicate elements have been found in the input matrix and the factorization has been abandoned
(ABORT = .TRUE.on entry).

7 Accuracy

The factorization obtained is exact for a perturbed matrix whose (i, j)th element differs from aij by less
than 3ερmij where ε is the machine precision, ρ is the growth value returned in W(1) if GROW =
.TRUE., and mij the number of Gaussian elimination operations applied to element (i, j).

If ρ = W(1) is very large or RPMIN is very small, then a fresh call of F01BRF is recommended.

[NP3390/19/pdf] F01BSF.3



F01BSF F01 – Matrix Factorizations

8 Further Comments

If the user has a sequence of problems with the same sparsity pattern then this routine is recommended
after F01BRF has been called for one such problem. It is typically 4 to 7 times faster but is potentially
unstable since the previous pivotal sequence is used. Further details on timing are given in document
F01BRF.

If growth estimation is performed (GROW = .TRUE.), then the time increases by between 5% and 10%.
Pivot size monitoring (ETA ≤ 1.0) involves a similar overhead.

We normally expect this routine to be entered with a matrix having the same pattern of non-zeros as
was earlier presented to F01BRF. However there is no record of this pattern, but rather a record of
the pattern including all fill-ins. Therefore we permit additional non-zeros in positions corresponding to
fill-ins.

If singular matrices are being treated then it is also required that the present matrix be sufficiently like
the previous one for the same permutations to be suitable for factorization with the same set of zero
pivots.

9 Example

To factorize the real sparse matrices



5 0 0 0 0 0
0 2 −1 2 0 0
0 0 3 0 0 0

−2 0 0 1 1 0
−1 0 0 −1 2 −3
−1 −1 0 0 0 6




and 


10 0 0 0 0 0
0 12 −3 −1 0 0
0 0 15 0 0 0

−2 0 0 10 −1 0
−1 0 0 −5 1 −1
−1 −2 0 0 0 6




.

This example program simply prints the values of W(1) and RPMIN returned by F01BSF . Normally the
calls of F01BRF and F01BSF would be followed by calls of F04AXF .

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* F01BSF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NMAX, NZMAX, LICN, LIRN
PARAMETER (NMAX=20,NZMAX=50,LICN=3*NZMAX,LIRN=3*NZMAX/2)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..
real ETA, RPMIN, U
INTEGER I, IFAIL, N, NZ
LOGICAL GROW, LBLOCK

* .. Local Arrays ..
real A(LICN), W(NMAX)
INTEGER ICN(LICN), IDISP(10), IKEEP(NMAX,5), IRN(LIRN),

+ IVECT(NZMAX), IW(NMAX,8), JVECT(NZMAX)

F01BSF.4 [NP3390/19/pdf]



F01 – Matrix Factorizations F01BSF

LOGICAL ABORT(4)
* .. External Subroutines ..

EXTERNAL F01BRF, F01BSF, X04ABF
* .. Executable Statements ..

WRITE (NOUT,*) ’F01BSF Example Program Results’
* Skip heading in data file

READ (NIN,*)
READ (NIN,*) N, NZ
CALL X04ABF(1,NOUT)
WRITE (NOUT,*)
IF (N.GT.0 .AND. N.LE.NMAX .AND. NZ.GT.0 .AND. NZ.LE.NZMAX) THEN

READ (NIN,*) (A(I),IRN(I),ICN(I),I=1,NZ)
U = 0.1e0
LBLOCK = .TRUE.
GROW = .TRUE.
ABORT(1) = .TRUE.
ABORT(2) = .TRUE.
ABORT(3) = .FALSE.
ABORT(4) = .TRUE.
IFAIL = 110

*
CALL F01BRF(N,NZ,A,LICN,IRN,LIRN,ICN,U,IKEEP,IW,W,LBLOCK,GROW,

+ ABORT,IDISP,IFAIL)
*

IF (GROW) THEN
WRITE (NOUT,*) ’On exit from F01BRF’
WRITE (NOUT,99998) ’Value of W(1) = ’, W(1)

END IF
READ (NIN,*) (A(I),IVECT(I),JVECT(I),I=1,NZ)
ETA = 0.1e0
IFAIL = 110

*
CALL F01BSF(N,NZ,A,LICN,IVECT,JVECT,ICN,IKEEP,IW,W,GROW,ETA,

+ RPMIN,ABORT(4),IDISP,IFAIL)
*

IF (GROW) THEN
WRITE (NOUT,*)
WRITE (NOUT,*) ’On exit from F01BSF’
WRITE (NOUT,99998) ’Value of W(1) = ’, W(1)

END IF
IF (ETA.LT.1.0e0) THEN

WRITE (NOUT,*)
WRITE (NOUT,99998) ’Value of RPMIN = ’, RPMIN

END IF
ELSE

WRITE (NOUT,*) ’N or NZ is out of range.’
WRITE (NOUT,99999) ’N = ’, N, ’ NZ = ’, NZ

END IF
STOP

*
99999 FORMAT (1X,A,I5,A,I5)
99998 FORMAT (1X,A,F7.4)

END

[NP3390/19/pdf] F01BSF.5



F01BSF F01 – Matrix Factorizations

9.2 Program Data

F01BSF Example Program Data
6 15
5.0 1 1 2.0 2 2 -1.0 2 3 2.0 2 4 3.0 3 3
-2.0 4 1 1.0 4 4 1.0 4 5 -1.0 5 1 -1.0 5 4
2.0 5 5 -3.0 5 6 -1.0 6 1 -1.0 6 2 6.0 6 6
10.0 1 1 12.0 2 2 -3.0 2 3 -1.0 2 4 15.0 3 3
-2.0 4 1 10.0 4 4 -1.0 4 5 -1.0 5 1 -5.0 5 4
1.0 5 5 -1.0 5 6 -1.0 6 1 -2.0 6 2 6.0 6 6

9.3 Program Results

F01BSF Example Program Results

On exit from F01BRF
Value of W(1) = 18.0000

On exit from F01BSF
Value of W(1) = 51.0000

Value of RPMIN = 0.1000

F01BSF.6 (last) [NP3390/19/pdf]


