
F02 – Eigenvalues and Eigenvectors

F02FJF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

To find eigenvalues and eigenvectors of a real sparse symmetric or generalized symmetric eigenvalue
problem.

2 Specification

SUBROUTINE F02FJF(N, M, K, NOITS, TOL, DOT, IMAGE, MONIT, NOVECS,
1 X, NRX, D, WORK, LWORK, RWORK, LRWORK, IWORK,
2 LIWORK, IFAIL)
INTEGER N, M, K, NOITS, NOVECS, NRX, LWORK, LRWORK,
1 IWORK(LIWORK), LIWORK, IFAIL
real TOL, DOT, X(NRX,K), D(K), WORK(LWORK),
1 RWORK(LRWORK)
EXTERNAL DOT, IMAGE, MONIT

3 Description

F02FJF finds the m eigenvalues of largest absolute value and the corresponding eigenvectors for the real
eigenvalue problem

Cx = λx (1)

where C is an n by n matrix such that
BC = CT B (2)

for a given positive-definite matrix B. C is said to be B-symmetric. Different specifications of C allow
for the solution of a variety of eigenvalue problems. For example, when

C = A and B = I where A = AT

the routine finds the m eigenvalues of largest absolute magnitude for the standard symmetric eigenvalue
problem

Ax = λx. (3)

The routine is intended for the case where A is sparse.

As a second example, when
C = B−1A

where
A = AT

the routine finds the m eigenvalues of largest absolute magnitude for the generalized symmetric eigenvalue
problem

Ax = λBx. (4)

The routine is intended for the case where A and B are sparse.

The routine does not require C explicitly, but C is specified via a user-supplied routine IMAGE which,
given an n element vector z, computes the image w given by

w = Cz.

For instance, in the above example, where C = B−1A, routine IMAGE will need to solve the positive-
definite system of equations Bw = Az for w.

[NP3390/19/pdf] F02FJF.1

F02FJF F02 – Eigenvalues and Eigenvectors

To find the m eigenvalues of smallest absolute magnitude of (3) we can choose C = A−1 and hence
find the reciprocals of the required eigenvalues, so that IMAGE will need to solve Aw = z for w, and
correspondingly for (4) we can choose C = A−1B and solve Aw = Bz for w.

A table of examples of choice of IMAGE is given in Table 1. It should be remembered that the routine
also returns the corresponding eigenvectors and that B is positive-definite. Throughout A is assumed to
be symmetric and, where necessary, non-singularity is also assumed.

Eigenvalues Required Problem

Ax = λx (B = I) Ax = λBx ABx = λx

Largest Compute w = Az Solve Bw = Az Compute w = ABz

Smallest (Find 1/λ) Solve Aw = z Solve Aw = Bz Solve Av = z, Bw = v

Furthest from σ (Find
λ − σ)

Compute w = (A−σI)z Solve Bw = (A − σB)z Compute w = (AB −
σI)z

Closest to σ (Find
1/(λ − σ))

Solve (A − σI)w = z Solve (A − σB)w = Bz Solve (AB − σI)w = z

Table 1
The Requirement of IMAGE for Various Problems.

The matrix B also need not be supplied explicitly, but is specified via a user-supplied routine DOT which,
given n element vectors z and w, computes the generalized dot product wT Bz.

F02FJF is based upon routine SIMITZ (see Nikolai [1]), which is itself a derivative of the Algol procedure
ritzit (see Rutishauser [4]), and uses the method of simultaneous (subspace) iteration. (See Parlett [2]
for description, analysis and advice on the use of the method.)

The routine performs simultaneous iteration on k > m vectors. Initial estimates to p ≤ k eigenvectors,
corresponding to the p eigenvalues of C of largest absolute value, may be supplied by the user to F02FJF.
When possible k should be chosen so that the kth eigenvalue is not too close to the m required eigenvalues,
but if k is initially chosen too small then F02FJF may be re-entered, supplying approximations to the k
eigenvectors found so far and with k then increased.

At each major iteration F02FJF solves an r by r (r ≤ k) eigenvalue sub-problem in order to obtain an
approximation to the eigenvalues for which convergence has not yet occurred. This approximation is
refined by Chebyshev acceleration.

4 References

[1] Nikolai P J (1979) Algorithm 538: Eigenvectors and eigenvalues of real generalized symmetric
matrices by simultaneous iteration ACM Trans. Math. Software 5 118–125

[2] Parlett B N (1980) The Symmetric Eigenvalue Problem Prentice–Hall

[3] Rutishauser H (1969) Computational aspects of F L Bauer’s simultaneous iteration method Numer.
Math. 13 4–13

[4] Rutishauser H (1970) Simultaneous iteration method for symmetric matrices Numer. Math. 16
205–223

5 Parameters

1: N — INTEGER Input

On entry: n, the order of the matrix C.

Constraint: N ≥ 1.

F02FJF.2 [NP3390/19/pdf]

F02 – Eigenvalues and Eigenvectors F02FJF

2: M — INTEGER Input/Output

On entry: m, the number of eigenvalues required.

Constraint: M ≥ 1.

On exit: m′, the number of eigenvalues actually found. It is equal to m if IFAIL = 0 on exit, and
is less than m if IFAIL = 2, 3 or 4. See Section 6 and Section 8 for further information.

3: K — INTEGER Input

On entry: the number of simultaneous iteration vectors to be used. Too small a value of K may
inhibit convergence, while a larger value of K incurs additional storage and additional work per
iteration.

Suggested value: K = M + 4 will often be a reasonable choice in the absence of better information.

Constraint: M < K ≤ N.

4: NOITS — INTEGER Input/Output

On entry: the maximum number of major iterations (eigenvalue sub-problems) to be performed. If
NOITS ≤ 0, then the value 100 is used in place of NOITS.

On exit: the number of iterations actually performed.

5: TOL — real Input

On entry: a relative tolerance to be used in accepting eigenvalues and eigenvectors. If the eigenvalues
are required to about t significant figures, then TOL should be set to about 10−t. di is accepted as an
eigenvalue as soon as two successive approximations to di differ by less than (|d̃i|×TOL)/10, where
d̃i is the latest approximation to di. Once an eigenvalue has been accepted, then an eigenvector
is accepted as soon as (difi)/(di − dk) < TOL, where fi is the normalised residual of the current
approximation to the eigenvector (see Section 8 for further information). The values of the fi and
di can be printed from routine MONIT. If TOL is supplied outside the range (ε, 1.0), where ε is the
machine precision, then the value ε is used in place of TOL.

6: DOT — real FUNCTION, supplied by the user. External Procedure

DOT must return the value wT Bz for given vectors w and z. For the standard eigenvalue problem,
where B = I, DOT must return the dot product wT z.

Its specification is:

real FUNCTION DOT(IFLAG, N, Z, W, RWORK, LRWORK, IWORK, LIWORK)
INTEGER IFLAG, N, LRWORK, IWORK(LIWORK), LIWORK
real Z(N), W(N), RWORK(LRWORK)

1: IFLAG — INTEGER Input/Output
On entry: IFLAG is always non-negative.

On exit: IFLAG may be used as a flag to indicate a failure in the computation of wTBz. If
IFLAG is negative on exit from DOT, then F02FJF will exit immediately with IFAIL set to
IFLAG. Note that in this case DOT must still be assigned a value.

2: N — INTEGER Input
On entry: the number of elements in the vectors z and w and the order of the matrix B.

3: Z(N) — real array Input
On entry: the vector z for which wT Bz is required.

4: W(N) — real array Input
On entry: the vector w for which wT Bz is required.

[NP3390/19/pdf] F02FJF.3

F02FJF F02 – Eigenvalues and Eigenvectors

5: RWORK(LRWORK) — real array User Workspace
6: LRWORK — INTEGER Input
7: IWORK(LIWORK) — INTEGER array User Workspace
8: LIWORK — INTEGER Input

DOT is called from F02FJF with the parameters RWORK, LRWORK, IWORK and LIWORK
as supplied to F02FJF. The user is free to use the arrays RWORK and IWORK to supply
information to DOT and to IMAGE as an alternative to using COMMON.

DOT must be declared as EXTERNAL in the (sub)program from which F02FJF is called.
Parameters denoted as Input must not be changed by this procedure.

7: IMAGE — SUBROUTINE, supplied by the user. External Procedure

IMAGE must return the vector w = Cz for a given vector z.

Its specification is:

SUBROUTINE IMAGE(IFLAG, N, Z, W, RWORK, LRWORK, IWORK, LIWORK)
INTEGER IFLAG, N, LRWORK, IWORK(LIWORK), LIWORK
real Z(N), W(N), RWORK(LRWORK)

1: IFLAG — INTEGER Input/Output
On entry: IFLAG is always non-negative.

On exit: IFLAG may be used as a flag to indicate a failure in the computation of w. If IFLAG
is negative on exit from IMAGE, then F02FJF will exit immediately with IFAIL set to IFLAG.

2: N — INTEGER Input
On entry: n, the number of elements in the vectors w and z, and the order of the matrix C.

3: Z(N) — real array Input
On entry: the vector z for which Cz is required.

4: W(N) — real array Output
On exit: the vector w = Cz.

5: RWORK(LRWORK) — real array User Workspace
6: LRWORK — INTEGER Input
7: IWORK(LIWORK) — INTEGER array User Workspace
8: LIWORK — INTEGER Input

IMAGE is called from F02FJF with the parameters RWORK, LRWORK, IWORK and
LIWORK as supplied to F02FJF. The user is free to use the arrays RWORK and IWORK to
supply information to IMAGE and DOT as an alternative to using COMMON.

IMAGE must be declared as EXTERNAL in the (sub)program from which F02FJF is called.
Parameters denoted as Input must not be changed by this procedure.

8: MONIT — SUBROUTINE, supplied by the user. External Procedure

MONIT is used to monitor the progress of F02FJF. MONIT may be the dummy subroutine F02FJZ
if no monitoring is actually required. (F02FJZ is included in the NAG Fortran Library and so need
not be supplied by the user. The routine name F02FJZ may be implementation dependent: see
the Users’ Note for your implementation for details.) MONIT is called after the solution of each
eigenvalue sub-problem and also just prior to return from F02FJF. The parameters ISTATE and
NEXTIT allow selective printing by MONIT.

F02FJF.4 [NP3390/19/pdf]

F02 – Eigenvalues and Eigenvectors F02FJF

Its specification is:

SUBROUTINE MONIT(ISTATE, NEXTIT, NEVALS, NEVECS, K, F, D)
INTEGER ISTATE, NEXTIT, NEVALS, NEVECS, K
real F(K), D(K)

1: ISTATE — INTEGER Input
On entry: ISTATE specifies the state of F02FJF and will have values as follows:

ISTATE = 0

No eigenvalue or eigenvector has just been accepted.

ISTATE = 1

One or more eigenvalues have been accepted since the last call to MONIT.

ISTATE = 2

One or more eigenvectors have been accepted since the last call to MONIT.

ISTATE = 3

One or more eigenvalues and eigenvectors have been accepted since the last call to
MONIT.

ISTATE = 4

Return from F02FJF is about to occur.

2: NEXTIT — INTEGER Input
On entry: the number of the next iteration.

3: NEVALS — INTEGER Input
On entry: the number of eigenvalues accepted so far.

4: NEVECS — INTEGER Input
On entry: the number of eigenvectors accepted so far.

5: K — INTEGER Input
On entry: k, the number of simultaneous iteration vectors.

6: F(K) — real array Input
On entry: a vector of error quantities measuring the state of convergence of the simultaneous
iteration vectors. See the parameter TOL of F02FJF above and Section 8 for further details.
Each element of F is initially set to the value 4.0 and an element remains at 4.0 until the
corresponding vector is tested.

7: D(K) — real array Input
On entry: D(i) contains the latest approximation to the absolute value of the ith eigenvalue
of C.

MONIT must be declared as EXTERNAL in the (sub)program from which F02FJF is called.
Parameters denoted as Input must not be changed by this procedure.

9: NOVECS — INTEGER Input

On entry: the number of approximate vectors that are being supplied in X. If NOVECS is outside
the range (0,K), then the value 0 is used in place of NOVECS.

10: X(NRX,K) — real array Input/Output

On entry: if 0 < NOVECS ≤ K, the first NOVECS columns of X must contain approximations
to the eigenvectors corresponding to the NOVECS eigenvalues of largest absolute value of C.

[NP3390/19/pdf] F02FJF.5

F02FJF F02 – Eigenvalues and Eigenvectors

Supplying approximate eigenvectors can be useful when reasonable approximations are known, or
when the routine is being restarted with a larger value of K. Otherwise it is not necessary to supply
approximate vectors, as simultaneous iteration vectors will be generated randomly by the routine.

On exit: if IFAIL = 0, 2, 3 or 4, the first m′ columns contain the eigenvectors corresponding to the
eigenvalues returned in the first m′ elements of D (see below); and the next k − m′ − 1 columns
contain approximations to the eigenvectors corresponding to the approximate eigenvalues returned
in the next k − m′ − 1 elements of D. Here m′ is the value returned in M (see above), the number
of eigenvalues actually found. The kth column is used as workspace.

11: NRX — INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which F02FJF
is called.

Constraint: NRX ≥ N.

12: D(K) — real array Output

On exit: if IFAIL = 0, 2, 3 or 4, the first m′ elements contain the first m′ eigenvalues in
decreasing order of magnitude; and the next k−m′−1 elements contain approximations to the next
k − m′ − 1 eigenvalues. Here m′ is the value returned in M (see above), the number of eigenvalues
actually found. D(k) contains the value e where (−e, e) is the latest interval over which Chebyshev
acceleration is performed.

13: WORK(LWORK) — real array Workspace
14: LWORK — INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F02FJF
is called.

Constraint: LWORK ≥ 3 × K + max(K×K,2×N).

15: RWORK(LRWORK) — real array User Workspace

RWORK is not used by F02FJF, but is passed directly to routines DOT and IMAGE and may be
used to supply information to these routines.

16: LRWORK — INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which F02FJF
is called.

Constraint: LRWORK ≥ 1.

17: IWORK(LIWORK) — INTEGER array User Workspace

IWORK is not used by F02FJF, but is passed directly to routines DOT and IMAGE and may be
used to supply information to these routines.

18: LIWORK — INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which F02FJF
is called.

Constraint: LIWORK ≥ 1.

19: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL �= 0 on exit,
users are recommended to set IFAIL to −1 before entry. It is then essential to test the value of
IFAIL on exit. To suppress the output of an error message when soft failure occurs, set IFAIL to 1.

F02FJF.6 [NP3390/19/pdf]

F02 – Eigenvalues and Eigenvectors F02FJF

6 Error Indicators and Warnings

Errors or warnings specified by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from F02FJF because the user has set IFLAG negative
in DOT or IMAGE. The value of IFAIL will be the same as the user’s setting of IFLAG.

IFAIL = 1

On entry, N < 1,

or M < 1,

or M ≥ K,

or K > N,

or NRX < N,

or LWORK < 3 × K + max(K×K,2×N),

or LRWORK < 1,

or LIWORK < 1.

IFAIL = 2

Not all the requested eigenvalues and vectors have been obtained. Approximations to the
rth eigenvalue are oscillating rapidly indicating that severe cancellation is occurring in the rth
eigenvector and so M is returned as (r − 1). A restart with a larger value of K may permit
convergence.

IFAIL = 3

Not all the requested eigenvalues and vectors have been obtained. The rate of convergence of the
remaining eigenvectors suggests that more than NOITS iterations would be required and so the
input value of M has been reduced. A restart with a larger value of K may permit convergence.

IFAIL = 4

Not all the requested eigenvalues and vectors have been obtained. NOITS iterations have been
performed. A restart, possibly with a larger value of K, may permit convergence.

IFAIL = 5

This error is very unlikely to occur, but indicates that convergence of the eigenvalue sub-problem
has not taken place. Restarting with a different set of approximate vectors may allow convergence.
If this error occurs the user should check carefully that F02FJF is being called correctly.

7 Accuracy

Eigenvalues and eigenvectors will normally be computed to the accuracy requested by the parameter
TOL, but eigenvectors corresponding to small or to close eigenvalues may not always be computed to
the accuracy requested by the parameter TOL. Use of the routine MONIT to monitor acceptance of
eigenvalues and eigenvectors is recommended.

8 Further Comments

The time taken by the routine will be principally determined by the time taken to solve the eigenvalue
sub-problem and the time taken by the routines DOT and IMAGE. The time taken to solve an eigenvalue
sub-problem is approximately proportional to nk2. It is important to be aware that several calls to DOT
and IMAGE may occur on each major iteration.

As can be seen from Table 1, many applications of F02FJF will require routine IMAGE to solve a system
of linear equations. For example, to find the smallest eigenvalues of Ax = λBx, IMAGE needs to solve
equations of the form Aw = Bz for w and routines from Chapter F01 and Chapter F04 of the NAG
Fortran Library will frequently be useful in this context. In particular, if A is a positive-definite variable

[NP3390/19/pdf] F02FJF.7

F02FJF F02 – Eigenvalues and Eigenvectors

band matrix, F04MCF may be used after A has been factorized by F01MCF. Thus factorization need be
performed only once prior to calling F02FJF. An illustration of this type of use is given in the example
program.

An approximation d̃h, to the ith eigenvalue, is accepted as soon as d̃h and the previous approximation
differ by less than |d̃h|×TOL/10. Eigenvectors are accepted in groups corresponding to clusters of
eigenvalues that are equal, or nearly equal, in absolute value and that have already been accepted.
If dr is the last eigenvalue in such a group and we define the residual rj as

rj = Cxj − yr

where yr is the projection of Cxj , with respect to B, onto the space spanned by x1, x2, . . . , xr and xj is
the current approximation to the jth eigenvector, then the value fi returned in MONIT is given by

fi = max ‖rj‖B/‖Cxj‖B ‖x‖2
B = xT Bx

and each vector in the group is accepted as an eigenvector if

(|dr|fr)/(|dr| − e) < TOL

where e is the current approximation to |d̃k|. The values of the fi are systematically increased if the
convergence criteria appear to be too strict. See Rutishauser [4] for further details.

The algorithm implemented by F02FJF differs slightly from SIMITZ (Nikolai [1]) in that the eigenvalue
sub-problem is solved using the singular value decomposition of the upper triangular matrix R of the
Gram–Schmidt factorization of Cxr, rather than forming RT R.

9 Example

To find the four eigenvalues of smallest absolute value and corresponding eigenvectors for the generalized
symmetric eigenvalue problem Ax = λBx, where A and B are the 16 by 16 matrices

A = − 1
4




−4 1 1
1 −4 1 1

1 −4 1 1
1 −4 1 1

1 1 −4 1 1
1 1 −4 1 1

1 1 −4 1 1
1 1 −4 1 1

1 1 −4 1 1
1 1 −4 1 1

1 1 −4 1 1
1 1 −4 1 1

1 1 −4 1
1 1 −4 1

1 1 −4 1
1 1 −4




F02FJF.8 [NP3390/19/pdf]

F02 – Eigenvalues and Eigenvectors F02FJF

B = − 1
2




−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1
1 −2




TOL is taken as 0.0001 and 6 iteration vectors are used. F11JAF is used to factorize the matrix A, prior
to calling F02FJF, and F11JCF is used within IMAGE to solve the equations Aw = Bz for w. Details of
the factorization of A are passed from F11JAF to F11JCF by means of the COMMON block BLOCK1.

Output from MONIT occurs each time ISTATE is non-zero. Note that the required eigenvalues are the
reciprocals of the eigenvalues returned by F02FJF.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* F02FJF Example Program Text
* Mark 19 Revised. NAG Copyright 1999.
* .. Parameters ..

INTEGER NMAX, LA, LRWORK, KMAX, LWORK, LIWORK, NRX
PARAMETER (NMAX=16,LA=10*NMAX,LRWORK=1,KMAX=6,

+ LWORK=5*KMAX+2*NMAX,LIWORK=2*LA+7*NMAX+1,
+ NRX=NMAX)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Scalars in Common ..
INTEGER NNZ

* .. Arrays in Common ..
real A(LA)
INTEGER ICOL(LA), IPIV(NMAX), IROW(LA), ISTR(NMAX+1)

* .. Local Scalars ..
real DSCALE, DTOL, TOL
INTEGER I, IFAIL, J, K, L, LFILL, M, N, NNZC, NOITS,

+ NOVECS, NPIVM
CHARACTER MIC, PSTRAT

* .. Local Arrays ..
real D(NMAX), RWORK(LRWORK), WORK(LWORK), X(NRX,KMAX)
INTEGER IWORK(LIWORK)

* .. External Functions ..
real DOT
EXTERNAL DOT

* .. External Subroutines ..
EXTERNAL F02FJF, F02FJZ, F11JAF, IMAGE

* .. Common blocks ..
COMMON /BLOCK1/A, IROW, ICOL, IPIV, ISTR, NNZ

[NP3390/19/pdf] F02FJF.9

F02FJF F02 – Eigenvalues and Eigenvectors

* .. Executable Statements ..
WRITE (NOUT,*) ’F02FJF Example Program Results’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*) N, M, K, TOL
WRITE (NOUT,*)
IF (N.LT.5 .OR. N.GT.16) THEN

WRITE (NOUT,99999) ’N is out of range. N =’, N
ELSE IF (M.LT.1 .OR. M.GE.K .OR. K.GT.KMAX) THEN

WRITE (NOUT,99999) ’M or K out of range. M =’, M, ’ K =’, K
ELSE

*
* Set up the sparse symmetric coefficient matrix A.
*

L = 0
DO 20 I = 1, N

IF (I.GE.5) THEN
L = L + 1
A(L) = -0.25e0
IROW(L) = I
ICOL(L) = I - 4

END IF
IF (I.GE.2) THEN

L = L + 1
A(L) = -0.25e0
IROW(L) = I
ICOL(L) = I - 1

END IF
L = L + 1
A(L) = 1.0e0
IROW(L) = I
ICOL(L) = I

20 CONTINUE
NNZ = L

*
* Call F11JAF to find an incomplete Cholesky factorisation of A.
*

LFILL = 2
DTOL = 0.0e0
MIC = ’Modified’
DSCALE = 0.0e0
PSTRAT = ’Markowitz’
IFAIL = 1

*
CALL F11JAF(N,NNZ,A,LA,IROW,ICOL,LFILL,DTOL,MIC,DSCALE,PSTRAT,

+ IPIV,ISTR,NNZC,NPIVM,IWORK,LIWORK,IFAIL)
*

IF (IFAIL.NE.0) THEN
WRITE (NOUT,99999) ’F11JAF fails. IFAIL =’, IFAIL

ELSE
*
* Call F02FJF to find eigenvalues and eigenvectors.

IFAIL = 1
* * To obtain monitoring information from the supplied
* subroutine MONIT, replace the name F02FJZ by MONIT in
* the next statement, and declare MONIT as external *
*

NOITS = 1000

F02FJF.10 [NP3390/19/pdf]

F02 – Eigenvalues and Eigenvectors F02FJF

NOVECS = 0
*

CALL F02FJF(N,M,K,NOITS,TOL,DOT,IMAGE,F02FJZ,NOVECS,X,NRX,D,
+ WORK,LWORK,RWORK,LRWORK,IWORK,LIWORK,IFAIL)

*
IF (IFAIL.NE.0) THEN

WRITE (NOUT,99999) ’Warning - F02FJF returns IFAIL =’,
+ IFAIL

END IF
IF (IFAIL.GE.0 .AND. IFAIL.NE.1 .AND. IFAIL.LE.4 .AND. M.GE.

+ 1) THEN
DO 40 I = 1, M

D(I) = 1.0e0/D(I)
40 CONTINUE

WRITE (NOUT,*) ’Final results’
WRITE (NOUT,*)
WRITE (NOUT,*) ’ Eigenvalues’
WRITE (NOUT,99998) (D(I),I=1,M)
WRITE (NOUT,*)
WRITE (NOUT,*) ’ Eigenvectors’
WRITE (NOUT,99998) ((X(I,J),J=1,M),I=1,N)

END IF
END IF

END IF
60 STOP

*
99999 FORMAT (1X,A,I5,A,I5)
99998 FORMAT (1X,1P,4e12.3)

END
*

real FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK)
* This function implements the dot product - transpose(W)*B*Z.
* DOT assumes that N is at least 3.
* .. Scalar Arguments ..

INTEGER IFLAG, LIWORK, LRWORK, N
* .. Array Arguments ..

real RWORK(LRWORK), W(N), Z(N)
INTEGER IWORK(LIWORK)

* .. Local Scalars ..
real S
INTEGER I

* .. Executable Statements ..
S = 0.0e0
S = S + (Z(1)-0.5e0*Z(2))*W(1)
S = S + (-0.5e0*Z(N-1)+Z(N))*W(N)
DO 20 I = 2, N - 1

S = S + (-0.5e0*Z(I-1)+Z(I)-0.5e0*Z(I+1))*W(I)
20 CONTINUE

DOT = S
RETURN
END

*

[NP3390/19/pdf] F02FJF.11

F02FJF F02 – Eigenvalues and Eigenvectors

SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK)
* This routine solves A*W = B*Z for W.
* The routine assumes that N is at least 3.
* A, IROW, ICOL, IPIV, ISTR and NNZ must be as returned by routine
* F11JAF.
* .. Parameters ..

INTEGER NMAX, LA, LWORK
PARAMETER (NMAX=16,LA=10*NMAX,LWORK=6*NMAX+120)

* .. Scalar Arguments ..
INTEGER IFLAG, LIWORK, LRWORK, N

* .. Array Arguments ..
real RWORK(LRWORK), W(N), Z(N)
INTEGER IWORK(LIWORK)

* .. Scalars in Common ..
INTEGER NNZ

* .. Arrays in Common ..
real A(LA)
INTEGER ICOL(LA), IPIV(NMAX), IROW(LA), ISTR(NMAX+1)

* .. Local Scalars ..
real RNORM, TOL
INTEGER IFAIL, ITN, J, MAXITN
CHARACTER*2 METHOD

* .. Local Arrays ..
real RHS(NMAX), WORK(LWORK)

* .. External Functions ..
real X02AJF
EXTERNAL X02AJF

* .. External Subroutines ..
EXTERNAL F11JCF

* .. Common blocks ..
COMMON /BLOCK1/A, IROW, ICOL, IPIV, ISTR, NNZ

* .. Executable Statements ..
*
* Form B*Z in RHS and initialize W to zero.
*

RHS(1) = Z(1) - 0.5e0*Z(2)
W(1) = 0.0e0
RHS(N) = -0.5e0*Z(N-1) + Z(N)
W(N) = 0.0e0
DO 20 J = 2, N - 1

RHS(J) = -0.5e0*Z(J-1) + Z(J) - 0.5e0*Z(J+1)
W(J) = 0.0e0

20 CONTINUE
*
* Call F11JCF to solve the equations A*W = B*Z.
*

METHOD = ’CG’
TOL = X02AJF()
MAXITN = 100
IFAIL = 1

*
CALL F11JCF(METHOD,N,NNZ,A,LA,IROW,ICOL,IPIV,ISTR,RHS,TOL,MAXITN,

+ W,RNORM,ITN,WORK,LWORK,IFAIL)
*

IF (IFAIL.GT.0) IFLAG = -IFAIL
RETURN
END

*

F02FJF.12 [NP3390/19/pdf]

F02 – Eigenvalues and Eigenvectors F02FJF

SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D)
* Monitoring routine for F02FJF.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalar Arguments ..
INTEGER ISTATE, K, NEVALS, NEVECS, NEXTIT

* .. Array Arguments ..
real D(K), F(K)

* .. Local Scalars ..
INTEGER I

* .. Executable Statements ..
IF (ISTATE.NE.0) THEN

WRITE (NOUT,*)
WRITE (NOUT,99999) ’ ISTATE = ’, ISTATE, ’ NEXTIT = ’, NEXTIT
WRITE (NOUT,99999) ’ NEVALS = ’, NEVALS, ’ NEVECS = ’, NEVECS
WRITE (NOUT,*) ’ F D’
WRITE (NOUT,99998) (F(I),D(I),I=1,K)

END IF
RETURN

*
99999 FORMAT (1X,A,I4,A,I4)
99998 FORMAT (1X,1P,e11.3,3X,e11.3)

END

9.2 Program Data

F02FJF Example Program Data
16 4 6 0.0001

9.3 Program Results

F02FJF Example Program Results

Final results

Eigenvalues
5.488E-01 5.900E-01 5.994E-01 6.850E-01

Eigenvectors
1.189E-01 -2.153E-01 1.648E-01 -1.561E-01

-1.378E-01 1.741E-01 1.858E-01 1.931E-01
1.389E-01 1.626E-01 -1.763E-01 -3.005E-01

-1.343E-01 -1.602E-01 -2.227E-01 2.058E-01
2.012E-01 -3.217E-01 3.010E-01 -1.253E-01

-2.235E-01 2.761E-01 2.954E-01 7.440E-02
2.242E-01 2.692E-01 -2.899E-01 -2.312E-01

-2.093E-01 -2.914E-01 -3.320E-01 1.018E-01
2.093E-01 -2.914E-01 3.320E-01 1.018E-01

-2.242E-01 2.692E-01 2.899E-01 -2.312E-01
2.235E-01 2.761E-01 -2.954E-01 7.439E-02

-2.012E-01 -3.217E-01 -3.010E-01 -1.253E-01
1.343E-01 -1.602E-01 2.227E-01 2.058E-01

-1.389E-01 1.626E-01 1.763E-01 -3.005E-01
1.378E-01 1.741E-01 -1.858E-01 1.931E-01

-1.189E-01 -2.153E-01 -1.648E-01 -1.561E-01

[NP3390/19/pdf] F02FJF.13 (last)

