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1  Scope of the Chapter

This chapter provides routines for the solution of linear least-squares problems, eigenvalue problems and
singular value problems, as well as associated computations. It provides routines for:

— solution of linear least-squares problems

solution of symmetric eigenvalue problems

solution of nonsymmetric eigenvalue problems

solution of singular value problems

solution of generalized symmetric-definite eigenvalue problems

matrix factorizations associated with the above problems

estimating condition numbers of eigenvalues and eigenvectors
— estimating the numerical rank of a matrix
— solution of the Sylvester matrix equation

Routines are provided for both real and complex data.

For a general introduction to the solution of linear least-squares problems, you should turn first to Chapter
F04. The decision trees, at the end of Chapter FO4, direct you to the most appropriate routines in Chapter
F04 or Chapter FO8. Chapter FO4 contains Black Box routines which enable standard linear least-squares
problems to be solved by a call to a single routine.

For a general introduction to eigenvalue and singular value problems, you should turn first to Chapter F02.
The decision trees, at the end of Chapter F02, direct you to the most appropriate routines in Chapter F02.
Chapter FO02 contains Black Box routines which enable some standard types of problem to be solved by a
call to a single routine. Often routines in Chapter FO2 call Chapter FO8 routines to perform the necessary
computational tasks. However, divide and conquer algorithms for symmetric (Hermitian) eigenvalue
problem are available only in this chapter and they can be considered as Black Box routines.

The routines in this chapter (FO8) handle only dense, band, tridiagonal and Hessenberg matrices (not
matrices with more specialized structures, or general sparse matrices). The decision trees in Section 4
direct you to the most appropriate routines in Chapter FOS.

The routines in this chapter have all been derived from the LAPACK project (see Anderson et al. (1999)).
They have been designed to be efficient on a wide range of high-performance computers, without
compromising efficiency on conventional serial machines.

It is not expected that every user will need to read all of the following sections, but rather will pick out
those sections relevant to their particular problem.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of linear least-squares problems,
eigenvalue and singular value problems. Consult a standard textbook for a more thorough discussion, for
example Golub and van Loan (1996).

2.1 Linear Least-squares Problems
The linear least-squares problem is

minimize ||b — Az||,, (1)
T

where A is an m by n matrix, b is a given m element vector and x is the n element solution vector.

In the most usual case m > n and rank(A) = n, so that A has full rank and in this case the solution to
problem ;(1) of is unique; the problem is also referred to as finding a least-squares solution to an
overdetermined system of linear equations.

When m < n and rank(A) = m, there are an infinite number of solutions z which exactly satisfy
b— Az = 0. In this case it is often useful to find the unique solution z which minimizes ||z||,, and the
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problem is referred to as finding a minimum-norm solution to an underdetermined system of linear
equations.

In the general case when we may have rank(A) < min(m,n) — in other words, A may be rank-deficient —
we seek the minimum-norm least-squares solution x which minimizes both ||z|, and ||b — Az||,.

This chapter (FO8) contains computational routines that can be combined with routines in Chapter FO7 to
solve these linear least-squares problems. Chapter FO4 contains Black Box routines to solve these linear
least-squares problems in standard cases. The next two sections discuss the factorizations that can be used
in the solution of linear least-squares problems.

2.2 Orthogonal Factorizations and Least-squares Problems

A number of routines are provided for factorizing a general rectangular m by n matrix A, as the product of
an orthogonal matrix (unitary if complex) and a triangular (or possibly trapezoidal) matrix.

A real matrix Q is orthogonal if Q7Q = I; a complex matrix Q is unitary if Q”Q = I. Orthogonal or
unitary matrices have the important property that they leave the two-norm of a vector invariant, so that

2l = lQ=l,,

if @ is orthogonal or unitary. They usually help to maintain numerical stability because they do not
amplify rounding errors.

Orthogonal factorizations are used in the solution of linear least-squares problems. They may also be used
to perform preliminary steps in the solution of eigenvalue or singular value problems, and are useful tools
in the solution of a number of other problems.

2.2.1 QR factorization

The most common, and best known, of the factorizations is the QR factorization given by
AzQ(?), if m > n,

where R is an n by n upper triangular matrix and () is an m by m orthogonal (or unitary) matrix. If A is
of full rank n, then R is non-singular. It is sometimes convenient to write the factorization as

1-@aeg)

which reduces to
A=QR,
where (), consists of the first n columns of ), and ), the remaining m — n columns.
If m < n, R is trapezoidal, and the factorization can be written
A=Q(R, Ry), if m<mn,
where R, is upper triangular and R, is rectangular.

The QR factorization can be used to solve the linear least-squares problem ;(1) of when m > n and A is
of full rank, since

c — Rz

Ib— Az|l, = |Q"b — Q" Az|,, = c

c o T ATy
(ci) - <Q;Tb) -

and c; is an n element vector. Then z is the solution of the upper triangular system

)

where

C

Rz =¢.
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r:b—Ax:Q(CO>.
2

The residual sum of squares ||7’||§ may be computed without forming r explicitly, since

The residual vector r is given by

Il = 1o = Azlly = [leal,-

2.2.2 LQ factorization
The LQ factorization is given by

A=(L 0Q=(L o><g;)—m], it m<n,

where L is m by m lower triangular, () is n by n orthogonal (or unitary), (), consists of the first m rows
of @, and ), the remaining n — m rows.

The LQ factorization of A is essentially the same as the QR factorization of A7 (A if A is complex),
since

A=(L O)Q(:)AT:QT(LOT>.

The L@ factorization may be used to find a minimum norm solution of an underdetermined system of
linear equations Ax = b where A is m by n with m < n and has rank m. The solution is given by

l‘:QT<LZ)Ib>.

2.2.3 OR factorization with column pivoting

To solve a linear least-squares problem ;(1) of when A is not of full rank, or the rank of A is in doubt, we
can perform either a Q)R factorization with column pivoting or a singular value decomposition.

The QR factorization with column pivoting is given by
a=q(§)r" mzn

where () and R are as before and P is a (real) permutation matrix, chosen (in general) so that
[T11] > [roa] > - > |1y

and moreover, for each k,

|7ﬂkk‘ > HRk:j,ij ]: k+ 17 sy N

_(RBn Rn
k= ( 0 R22
where Ry, is the leading k by k upper triangular submatrix of R then, in exact arithmetic, if rank(A) = &,

the whole of the submatrix R,, in rows and columns k£ + 1 to n would be zero. In numerical computation,
the aim must be to determine an index k, such that the leading submatrix R;; is well-conditioned, and R,,

is negligible, so that
R— Ry Riu\ _ (Rin Rp
0 Ry) O (U

Then k is the effective rank of A. See Golub and van Loan (1996) for a further discussion of numerical
rank determination.

If we put

The so-called basic solution to the linear least-squares problem ;(1) of can be obtained from this
factorization as
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Rilé
- p 11 ¢
e=r(M50).

where ¢; consists of just the first £ elements of ¢ = QTb.

2.3 The Singular Value Decomposition
The singular value decomposition (SVD) of an m by n matrix A is given by
A=UxV", (A=UxV" in the complex case)

where U and V are orthogonal (unitary) and ¥ is an m by n diagonal matrix with real diagonal elements,
o;, such that

o 2032 2 Omin(m,n) > 0.

The o; are the singular values of A and the first min(m, n) columns of U and V are the left and right
singular vectors of A. The singular values and singular vectors satisfy

A’Ui = 0o;U; and AT’U,Z‘ = 0;; (Or AHUZ = Givi)
where u; and v; are the ¢th columns of U and V respectively.
The computation proceeds in the following stages.

1. The matrix A is reduced to bidiagonal form A = U, BV{ if A is real (A = U, BV{" if A is complex),
where U; and V| are orthogonal (unitary if A is complex), and B is real and upper bidiagonal when
m > n and lower bidiagonal when m < n, so that B is nonzero only on the main diagonal and either
on the first superdiagonal (if m > n) or the first subdiagonal (if m < n).

2. The SVD of the bidiagonal matrix B is computed as B = UQEVZT, where U, and V, are orthogonal
and X is diagonal as described above. The singular vectors of A are then U = U, U, and V = V| V5.

If m > n, it may be more efficient to first perform a QR factorization of A, and then compute the SVD of
the n by n matrix R, since if A= QR and R = ULV’ then the SVD of A is given by A = (QU)ZV™.

Similarly, if m < n, it may be more efficient to first perform an L) factorization of A.

2.4 The Singular Value Decomposition and Least-squares Problems

The SVD may be used to find a minimum norm solution to a (possibly) rank-deficient linear least-squares
problem ;(1) of . The effective rank, k, of A can be determined as the number of singular values which

exceed a suitable threshold. Let 3 be the leading & by k submatrix of ¥, and V be the matrix consisting
of the first £ columns of V. Then the solution is given by

S
r=VX ¢,

where ¢; consists of the first k elements of ¢ =U Th= UZT U lTb.

2.5 Symmetric Eigenvalue Problems

The symmetric eigenvalue problem is to find the eigenvalues, A, and corresponding eigenvectors, z # 0,
such that

Az=Xz, A=A", where A is real.
For the Hermitian eigenvalue problem we have
Az=MXz, A=A"  where A is complex.
For both problems the eigenvalues A\ are real.

When all eigenvalues and eigenvectors have been computed, we write

A=ZAZ" (or A= ZAZ" if complex),
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where A is a diagonal matrix whose diagonal elements are the eigenvalues, and Z is an orthogonal (or
unitary) matrix whose columns are the eigenvectors. This is the classical spectral factorization of A.

The basic task of the symmetric eigenproblem routines is to compute values of A and, optionally,
corresponding vectors z for a given matrix A. This computation proceeds in the following stages.

1. The real symmetric or complex Hermitian matrix A is reduced to real tridiagonal form T. If A is real
symmetric this decomposition is A = QTQ" with Q orthogonal and 7' symmetric tridiagonal. If A is

complex Hermitian, the decomposition is A = QTQ" with @ unitary and T, as before, real
symmetric tridiagonal.

2. Figenvalues and eigenvectors of the real symmetric tridiagonal matrix 7' are computed. If all

eigenvalues and eigenvectors are computed, this is equivalent to factorizing 7" as T = SAS”, where S
is orthogonal and A is diagonal. The diagonal entries of A are the eigenvalues of 7', which are also
the eigenvalues of A, and the columns of S are the eigenvectors of T'; the eigenvectors of A are the

columns of Z = QS, so that A = ZAZ" (ZAZ" when A is complex Hermitian).

This chapter now supports three primary algorithms for computing eigenvalues and eigenvectors of real
symmetric matrices and complex Hermitian matrices. They are:

(1) the divide and conquer algorithm;
(i) the QR algorithm;
(iii) bisection followed by inverse iteration.

The divide and conquer algorithm is generally more efficient than the traditional QR algorithm and is
recommended for computing all eigenvalues and eigenvectors. Furthermore, eigenvalues and eigenvectors
can be obtained by calling one single routine in the case of the divide and conquer algorithm. In general,
more than one routine has to be called if the QR algorithm or bisection followed by inverse iteration is
used.

2.6 Generalized Symmetric-Definite Eigenvalue Problems

This section is concerned with the solution of the generalized eigenvalue problems Az = ABz, ABz = Az,
and BAz = Az, where A and B are real symmetric or complex Hermitian and B is positive-definite. Each
of these problems can be reduced to a standard symmetric eigenvalue problem, using a Cholesky

factorization of B as either B= LL" or B=U'U (LLH or U"U in the Hermitian case).
With B = LL", we have
Az=ABz= (L"AL")(L"2) = A\(L"2).

Hence the eigenvalues of Az = ABz are those of Cy= Ay, where C is the symmetric matrix
C=L"AL" and y = L"z 1In the complex case C is Hermitian with C = L™'AL™" and y = L" 2.

Table 1 summarizes how each of the three types of problem may be reduced to standard form Cy = Ay,
and how the eigenvectors z of the original problem may be recovered from the eigenvectors y of the
reduced problem. The table applies to real problems; for complex problems, transposed matrices must be
replaced by conjugate-transposes.
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Type of problem | Factorization of B | Reduction Recovery of eigenvectors

1. | Az=ABz B=rLLT C=L"ALT" | 2=L"y

B=U"U C=U"AU" | 2=U""y
2. | ABz= )Xz B=LLT C=L"AL z=LTy

B=UTU C=UAU" | z=U"y
3. | BAz= Az B=1LL" C=L"AL z=Ly

B=U"U C=vAUT | 2=U"y

Tablel

Reduction of generalized symmetric-definite eigenproblems to standard problems

When the generalized symmetric-definite problem has been reduced to the corresponding standard problem
Cy = Ay, this may then be solved using the routines described in the previous section. No special routines
are needed to recover the eigenvectors z of the generalized problem from the eigenvectors y of the standard
problem, because these computations are simple applications of Level 2 or Level 3 BLAS (see Chapter
F06).

2.7 Packed Storage for Symmetric Matrices

Routines which handle symmetric matrices are usually designed so that they use either the upper or lower
triangle of the matrix; it is not necessary to store the whole matrix. If either the upper or lower triangle is
stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements of
the array can be used to store other useful data. However, that is not always convenient, and if it is
important to economize on storage, the upper or lower triangle can be stored in a one-dimensional array of
length n(n + 1)/2; that is, the storage is almost halved.

This storage format is referred to as packed storage; it is described in Section 3.3.

Routines designed for packed storage are usually less efficient, especially on high-performance computers,
so there is a trade-off between storage and efficiency.

2.8 Band Matrices

A band matrix is one whose elements are confined to a relatively small number of sub-diagonals or super-
diagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to reduce the
amount of work and storage required. The storage scheme for band matrices is described in Section 3.3.

If the problem is generalized symmetric definite eigenvalue problem Az = ABz and the matrices A and B
are additionally banded, the matrix C as defined in Section 2.6 is, in general, full. We can reduce the
problem to a banded standard problem by modifying the definition of C' thus:

C=X"AX, where X=U"'Q orL77Q,
where () is an orthogonal matrix chosen to ensure that C' has bandwidth no greater than that of A.

A further refinement is possible when A and B are banded, which halves the amount of work required to

form C. Instead of the standard Cholesky factorization of B as U U or LL”, we use a split Cholesky
factorization B = STS, where
U
S = 11 )
<M21 Ly

with U}, upper triangular and L,, lower triangular of order approximately n/2; S has the same bandwidth
as B.
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2.9 Nonsymmetric Eigenvalue Problems

The nonsymmetric eigenvalue problem is to find the eigenvalues, A, and corresponding eigenvectors,
v # 0, such that

Av = .
More precisely, a vector v as just defined is called a right eigenvector of A, and a vector u # 0 satisfying
u'A=x " (WA= " when uis complex)
is called a left eigenvector of A.
A real matrix A may have complex eigenvalues, occurring as complex conjugate pairs.
This problem can be solved via the Schur factorization of A, defined in the real case as
A=2T7",

where Z is an orthogonal matrix and 7 is an upper quasi-triangular matrix with 1 by 1 and 2 by 2 diagonal
blocks, the 2 by 2 blocks corresponding to complex conjugate pairs of eigenvalues of A. In the complex
case, the Schur factorization is

A=27TZ",
where Z is unitary and 7" is a complex upper triangular matrix.

The columns of Z are called the Schur vectors. For each k (1 < k < n), the first & columns of Z form an
orthonormal basis for the invariant subspace corresponding to the first k& eigenvalues on the diagonal of 7.
Because this basis is orthonormal, it is preferable in many applications to compute Schur vectors rather
than eigenvectors. It is possible to order the Schur factorization so that any desired set of k eigenvalues
occupy the k leading positions on the diagonal of 7'

The two basic tasks of the nonsymmetric eigenvalue routines are to compute, for a given matrix A, all n
values of A and, if desired, their associated right eigenvectors v and/or left eigenvectors u, and the Schur
factorization.

These two basic tasks can be performed in the following stages.

1. A general matrix A is reduced to upper Hessenberg form H which is zero below the first subdiagonal.

The reduction may be written A = QHQ" with Q orthogonal if A is real, or A = QHQ with Q
unitary if A is complex.

2. The upper Hessenberg matrix H is reduced to Schur form 7T, giving the Schur factorization
H = STS" (for H real) or H = STSH (for H complex). The matrix S (the Schur vectors of H)
may optionally be computed as well. Alternatively S may be postmultiplied into the matrix @
determined in stage 1, to give the matrix Z = .S, the Schur vectors of A. The eigenvalues are
obtained from the diagonal elements or diagonal blocks of 7.

3. Given the eigenvalues, the eigenvectors may be computed in two different ways. Inverse iteration can
be performed on H to compute the eigenvectors of H, and then the eigenvectors can be multiplied by
the matrix @ in order to transform them to eigenvectors of A. Alternatively the eigenvectors of 7" can
be computed, and optionally transformed to those of H or A if the matrix .S or Z is supplied.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix. This
is discussed further in Section 2.12.6 below.

2.10 Generalized Nonsymmetric Eigenvalue Problem

The generalized nonsymmetric eigenvalue problem is to find the eigenvalues, A, and corresponding
eigenvectors, v # 0, such that

Av = \Buw.

More precisely, a vector v as just defined is called a right eigenvector of the matrix pair (A, B), and a
vector u # 0 satisfying
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u'A=X "B (u A= \u" B when u is complex)
is called a left eigenvector of the matrix pair (A, B).

If B is singular then the problem has one or more infinite eigenvalues \ = oo, corresponding to Bv = 0.
Note that if A is non-singular, then the equivalent problem pAv = Bw is perfectly well defined and an
infinite eigenvalue corresponds to pu=0. To deal with both finite (including zero) and infinite
eigenvalues, the routines in this chapter do not compute A explicitly, but rather return a pair of numbers
(v, B) such that if 3#0

A=a/f

and if « #0 and =0 then A =o00. [ is always returned as real and non-negative. Of course,
computationally an infinite eigenvalue may correspond to a small  rather than an exact zero.

For a given pair (A, B) the set of all the matrices of the form (A — AB) is called a matrix pencil and A
and v are said to be an eigenvalue and eigenvector of the pencil (A — AB). If A and B are both singular
and share a common null-space then

det(A— AB) =0

so that the pencil (A — AB) is singular for all X\. In other words any A can be regarded as an eigenvalue.
In exact arithmetic a singular pencil will have o = = 0 for some (o, 3). Computationally if some pair
(a, B) is small then the pencil is singular, or nearly singular, and no reliance can be placed on any of the
computed eigenvalues. Singular pencils can also manifest themselves in other ways; see, in particular,
Sections 2.3.5.2 and 4.11.1.4 of Anderson et al. (1999) for further details.

The generalized eigenvalue problem can be solved via the generalized Schur factorization of the pair
(A, B) defined in the real case as

A=QSZ", B=QrZ",

where () and Z are orthogonal, T is upper triangular with non-negative diagonal elements and S is upper
quasi-triangular with 1 by 1 and 2 by 2 diagonal blocks, the 2 by 2 blocks corresponding to complex
conjugate pairs of eigenvalues. In the complex case, the generalized Schur factorization is

A=Qsz", B=Qrz",

where () and Z are unitary and S and T are upper triangular, with 7" having real non-negative diagonal
elements. The columns of ) and Z are called respectively the left and right generalized Schur vectors and
span pairs of deflating subspaces of A and B, which are a generalization of invariant subspaces.

The two basic tasks of the generalized nonsymmetric eigenvalue routines are to compute, for a given pair
(A, B), all n values of A and, if desired, their associated right eigenvectors v and/or left eigenvectors wu,
and the generalized Schur factorization.

These two basic tasks can be performed in the following stages.

1. The matrix pair (A, B) is reduced to generalized upper Hessenberg form (H, R), where H is upper
Hessenberg (zero below the first subdiagonal) and R is upper triangular. The reduction may be

written as A=QH ZIT,B = QIRZIT in the real case with @; and Z; orthogonal, and
A=QHZ! B=Q,RZ in the complex case with Q; and Z, unitary.

2. The generalized upper Hessenberg form (H, R) is reduced the the generalized Schur form (S,T)
using the generalized Schur factorization H = Q,57Z3, R = Q,TZ3 in the real case with Q, and Z,

orthogonal, and H = Q2SZfI R = QZTZZH in the complex case. The generalized Schur vectors of
(A, B) are given by Q = Q,Q,, Z = Z,Z,. The eigenvalues are obtained from the diagonal elements
(or blocks) of the pair (S,T).

3. Given the eigenvalues, the eigenvectors of the pair (S,7) can be computed, and optionally
transformed to those of (H, R) or (A, B).

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix pair.
This is discussed further in Section 2.12.8 below.
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2.11 The Sylvester Equation
The Sylvester equation is a matrix equation of the form
AX+ XB=2C,

where A, B, and C' are given matrices with A being m by m, B an n by n matrix and C, and the solution
matrix X, m by n matrices. The solution of a special case of this equation occurs in the computation of
the condition number for an invariant subspace, but a combination of routines in this chapter allows the
solution of the general Sylvester equation.

2.12 Error and Perturbation Bounds and Condition Numbers

In this section we discuss the effects of rounding errors in the solution process and the effects of
uncertainties in the data, on the solution to the problem. A number of the routines in this chapter return
information, such as condition numbers, that allow these effects to be assessed. First we discuss some
notation used in the error bounds of later sections.

The bounds usually contain the factor p(n) (or p(m,n)), which grows as a function of the matrix
dimension n (or matrix dimensions m and n). It measures how errors can grow as a function of the matrix
dimension, and represents a potentially different function for each problem. In practice, it usually grows
just linearly; p(n) < 10n is often true, although generally only much weaker bounds can be actually
proved. We normally describe p(n) as a ‘modestly growing’ function of n. For detailed derivations of
various p(n), see Golub and van Loan (1996) and Wilkinson (1965).

For linear equation (see Chapter F07) and least-squares solvers, we consider bounds on the relative error
||z — Z||/||z|| in the computed solution &, where x is the true solution. For eigenvalue problems we
consider bounds on the error |A; — ):,| in the ith computed eigenvalue ):i, where A; is the true ith
eigenvalue. For singular value problems we similarly consider bounds |o; — 7;].

Bounding the error in computed eigenvectors and singular vectors ¥; is more subtle because these vectors
are not unique: even though we restrict ||9;]|, = 1 and ||v;||, = 1, we may still multiply them by arbitrary
constants of absolute value 1. So to avoid ambiguity we bound the angular difference between v; and the
true vector v;, so that

0(v;, ;) = acute an%le between v; and ;
= arccos |v;" U;.

(2)

When 6(v;, 0;) is small, we can choose a constant o with absolute value 1 so that ||av; — 0;||, = 0(v;, 0;).

In addition to bounds for individual eigenvectors, bounds can be obtained for the spaces spanned by
collections of eigenvectors. These may be much more accurately determined than the individual
eigenvectors which span them. These spaces are called invariant subspaces in the case of eigenvectors,
because if v is any vector in the space, Av is also in the space, where A is the matrix. Again, we will use

angle to measure the difference between a computed space S and the true space S: some,

0(S,S) = acute angle between S and S
= maxminf(s,§) or maxminf(s,S3) 3)

s€S  sed s s€S

A0 20 540 20

0(S, S*) may be computed as follows. Let S be a matrix whose columns are orthonormal and spanS.
Similarly let S be an orthonormal matrix with columns spanning S. Then

0(S, S) = arccos oy (S™S).

Finally, we remark on the accuracy of the bounds when they are large. Relative errors like ||Z — x| /||z||
and angular errors like 6(v;,v;) are only of interest when they are much less than 1. Some stated bounds
are not strictly true when they are close to 1, but rigorous bounds are much more complicated and supply
little extra information in the interesting case of small errors. These bounds are indicated by using the
symbol <, or ‘approximately less than’, instead of the usual <. Thus, when these bounds are close to 1
or greater, they indicate that the computed answer may have no significant digits at all, but do not
otherwise bound the error.
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2.12.1 Least-squares problems

The conventional error analysis of linear least-squares problems goes as follows. The problem is to find
the = minimizing ||Az — b||,. Let Z be the solution computed using one of the methods described above.
We discuss the most common case, where A is overdetermined (i.e., has more rows than columns) and has
full rank.

Then the computed solution £ has a small normwise backward error. In other words & minimizes
(A + E)z — (b+ f)ll,, where
£l ||f||2>
X , < p(n)e
(|A||2 1611

and p(n) is a modestly growing function of m and e is the machine precision.  Let
Ky (A) = Opax (A) /omin(A), p = ||Az — b||,, and sin(d) = p/||bl|,. Then if p(n)e is small enough, the
error £ — x is bounded by

|z — &, _ 2ey(A) 2
W Np<n)€{ cos(0) +tan(9),<;2(A)}‘

If A is rank-deficient, the problem can be regularized by treating all singular values less than a user-
specified threshold as exactly zero. See Golub and van Loan (1996) for error bounds in this case, as well
as for the underdetermined case.

The solution of the overdetermined, full-rank problem may also be characterized as the solution of the

linear system of equations
I A\(r\ (0
AT 0 x) \0)/

By solving this linear system (see Chapter FO7) componentwise error bounds can also be obtained Arioli et
al. (1989).

2.12.2 The singular value decomposition
The usual error analysis of the SVD algorithm is as follows (see Golub and van Loan (1996)).
The computed SVD, USV7, is nearly the exact SVD of A+ E, i.e., A+ E = (U + 6U)S(V + 6V) is the

true SVD, so that U+6U and V46V are both orthogonal, where |E|,/|All, < p(m,n)e,

16U < p(m,n)e, and ||6V]| < p(m,n)e. Here p(m,n) is a modestly growing function of m and n
and e is the machine precision. Each computed singular value &; differs from the true o; by an amount
satisfying the bound

|6; — 0;| < p(m,n)eoy.

Thus large singular values (those near ;) are computed to high relative accuracy and small ones may not
be.

The angular difference between the computed left singular vector #; and the true w; satisfies the
approximate bound

Oy < Pl
1y )~ gap7

where
gap; = min |o; — o
J#i
is the absolute gap between o; and the nearest other singular value. Thus, if o; is close to other singular
values, its corresponding singular vector u; may be inaccurate. The same bound applies to the computed

right singular vector 9; and the true vector v;. The gaps may be easily obtained from the computed
singular values.

Let § be the space spanned by a collection of computed left singular vectors {t,;,1 € I}, where I is a
subset of the integers from 1 to n. Let § be the corresponding true space. Then
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0(5.5) < PmmelAlL
gapy
where
gap; = min{|o; —o;| foriel, j&I}
is the absolute gap between the singular values in I and the nearest other singular value. Thus, a cluster of

close singular values which is far away from any other singular value may have a well determined space S
even if its individual singular vectors are ill-conditioned. The same bound applies to a set of right singular
vectors {v;,i € I}.

In the special case of bidiagonal matrices, the singular values and singular vectors may be computed much
more accurately (see Demmel and Kahan (1990)). A bidiagonal matrix B has nonzero entries only on the
main diagonal and the diagonal immediately above it (or immediately below it). Reduction of a dense
matrix to bidiagonal form B can introduce additional errors, so the following bounds for the bidiagonal
case do not apply to the dense case.

Using the routines in this chapter, each computed singular value of a bidiagonal matrix is accurate to
nearly full relative accuracy, no matter how tiny it is, so that

6; — 0i| < p(m,n)eo;.
The computed left singular vector 4; has an angular error at most about

9(1}’7'7 ui) rg M
relgap;
where
relgap, = min lo; — o,/ (0 + )
J#i
is the relative gap between o; and the nearest other singular value. The same bound applies to the right
singular vector ¢; and v;. Since the relative gap may be much larger than the absolute gap, this error

bound may be much smaller than the previous one. The relative gaps may be easily obtained from the
computed singular values.

2.12.3 The symmetric eigenproblem

The usual error analysis of the symmetric eigenproblem is as follows (see Parlett (1980)).

The computed eigendecomposition ZAZT s nearly the exact eigendecomposition of A+ F, i.e.,
A+ E=(Z+6Z)AZ+6Z)" is the true eigendecomposition so that Z -+ 6Z is orthogonal, where
IEl,/|All, < p(n)e and ||6Z]|, < p(n)e and p(n) is a modestly growing function of n and € is the

machine precision. Each computed eigenvalue \; differs from the true A; by an amount satisfying the
bound

[Ai = Ail < p(n)el| All,.
Thus large eigenvalues (those near max|);| = ||Al|,) are computed to high relative accuracy and small ones
7
may not be.

The angular difference between the computed unit eigenvector Z; and the true z; satisfies the approximate
bound

ir*i) ~ gap;

if p(n)e is small enough, where

gap; = rggl A = Ajl

is the absolute gap between A; and the nearest other eigenvalue. Thus, if ); is close to other eigenvalues,
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its corresponding eigenvector z; may be inaccurate. The gaps may be easily obtained from the computed
eigenvalues.

Let S be the invariant subspace spanned by a collection of eigenvectors {%;,1 € I'}, where I is a subset of
the integers from 1 to n. Let S be the corresponding true subspace. Then

H(S‘, S) < p(n)e||All
gapy
where
gap; = min{|\, = \;| foriecl, j¢I}
is the absolute gap between the eigenvalues in I and the nearest other eigenvalue. Thus, a cluster of close

eigenvalues which is far away from any other eigenvalue may have a well determined invariant subspace §
even if its individual eigenvectors are ill-conditioned.

In the special case of a real symmetric tridiagonal matrix 7', routines in this chapter can compute the
eigenvalues and eigenvectors much more accurately. See Anderson ef al. (1999) for further details.

2.12.4 The generalized symmetric-definite eigenproblem

The three types of problem to be considered are A — AB, AB — A\l and BA — A\I. In each case A and B
are real symmetric (or complex Hermitian) and B is positive-definite. We consider each case in turn,
assuming that routines in this chapter are used to transform the generalized problem to the standard
symmetric problem, followed by the solution of the the symmetric problem. In all cases

gap; = min [A; — A,
is the absolute gap between )\; and the nearest other eigenvalue.
1. A—AB. The computed eigenvalues ); can differ from the true eigenvalues ); by an amount
A = Al £ p(n)el B ]|
The angular difference between the computed eigenvector 2; and the true eigenvector z; is

o) < PIB Al (a(B)
1Y)~ gapl

2. AB— )Xl or BA— \l. The computed eigenvalues A; can differ from the true eigenvalues \; by an
amount

A = Ail < p(n)el| Bl LAl
The angular difference between the computed eigenvector z; and the true eigenvector z; is

(o) < A BLLANL((B)
1Y)~ gapZ

These error bounds are large when B is ill-conditioned with respect to inversion (k,(B) is large). It is
often the case that the eigenvalues and eigenvectors are much better conditioned than indicated here. One
way to get tighter bounds is effective when the diagonal entries of B differ widely in magnitude, as for
example with a graded matrix.

1. A—AB. Let D= diag(bfll/ by %) be a diagonal matrix. Then replace B by DBD and A by
DAD in the above bounds.

2. AB— Al or BA— )\l Let D= diag(bl_ll/z,...,b;,i/z) be a diagonal matrix. Then replace B by
DBD and A by D"'AD™! in the above bounds.

Further details can be found in Anderson et al. (1999).
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2.12.5 The nonsymmetric eigenproblem

The nonsymmetric eigenvalue problem is more complicated than the symmetric eigenvalue problem. In
this section, we just summarize the bounds. Further details can be found in Anderson et al. (1999).

We let A; be the ith computed eigenvalue and A; the ¢th true eigenvalue. Let ¢; be the corresponding
computed right eigenvector, and v; the true right eigenvector (so Av; = \jv;). If I is a subset of the
integers from 1 to n, we let \; denote the average of the selected eigenvalues: A\; = (3 ,, Ai)/ (X i 1),

and similarly for M. We also let §; denote the subspace spanned by {v;,i € I'}; it is called a right

invariant subspace because if v is any vector in §; then Av is also in S;. 8, is the corresponding
computed subspace.

The algorithms for the nonsymmetric eigenproblem are normwise backward stable: they compute the exact
eigenvalues, eigenvectors and invariant subspaces of slightly perturbed matrices A + E, where
IE|| < p(n)e||All. Some of the bounds are stated in terms of ||E||, and others in terms of ||E||; one
may use p(n)e for either quantity.

Routines are provided so that, for each ():7;, ;) pair the two values s; and sep,, or for a selected subset I of
eigenvalues the values s; and sep; can be obtained, for which the error bounds in Table 2 are true for
sufficiently small ||E|, (which is why they are called asymptotic):

Simple eigenvalue | |X, — )| < |E]l,/s:

Eigenvalue cluster | |X;, — \; < ||E||,/s;

Eigenvector 00 0:) < 1Bl /se

Invariant subspace | ¢($;, S;) < ||E||p/sepr

Table 2
Asymptotic error bounds for the nonsymmetric eigenproblem

If the problem is ill-conditioned, the asymptotic bounds may only hold for extremely small ||E||. The
global error bounds of Table 3 are guaranteed to hold for all ||E||, < s x sep/4:

Simple eigenvalue | | N\ — | < n|E|,/s; Holds for all

Eigenvalue cluster | |}, — )| < 2\ Ell,/ 51 Requires || E||p < s; X sepy/4
Eigenvector 0(d;,9;) < arctan(2|| E|| »/ (sep; — 4| E|| o/s;)) | Requires [ El[p < s; x sep;/4
Invariant subspace | ¢(§;, S;) < arctan(2|| E|| o/ (sepy — 4||E||/s;)) | Requires |E|lr < sp x sepp/4

Table 3
Global error bounds for the nonsymmetric eigenproblem

2.12.6 Balancing and condition for the nonsymmetric eigenproblem

There are two preprocessing steps one may perform on a matrix A in order to make its eigenproblem
easier. The first is permutation, or reordering the rows and columns to make A more nearly upper
triangular (closer to Schur form): A" = PAP”, where P is a permutation matrix. If A’ is permutable to
upper triangular form (or close to it), then no floating-point operations (or very few) are needed to reduce
it to Schur form. The second is scaling by a diagonal matrix D to make the rows and columns of A" more
nearly equal in norm: A” = DA'D™'. Scaling can make the matrix norm smaller with respect to the
eigenvalues, and so possibly reduce the inaccuracy contributed by roundoff (see Chapter, 1I/11 of
Wilkinson and Reinsch (1971)). We refer to these two operations as balancing.
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Permuting has no effect on the condition numbers or their interpretation as described previously. Scaling,
however, does change their interpretation and further details can be found in Anderson et al. (1999).

2.12.7 The generalized nonsymmetric eigenvalue problem

The algorithms for the generalized nonsymmetric eigenvalue problem are normwise backward stable: they
compute the exact eigenvalues (as the pairs («,(3)), eigenvectors and deflating subspaces of slightly
perturbed pairs (A + E, B+ F), where

(B, F)l|p < p(n)ell(A, Bl

Currently routines are not provided for computing bounds on the eigenvalues, eigenvectors and deflating
subspaces; these will be provided at a future mark.

2.12.8 Balancing the generalized eigenvalue problem

As with the standard nonsymmetric eigenvalue problem, there are two preprocessing steps one may
perform on a matrix pair (A, B) in order to make its eigenproblem easier; permutation and scaling, which
together are referred to as balancing, as indicated in the following two steps.

1. The balancing routine first attempts to permute A and B to block upper triangular form by a similarity

transformation:
Fyy F, Fpy
PAPT = F == F22 F23 5
F33
G G Gy
PBPT =G = Gy Gy |,
G33

where P is a permutation matrix, Fi;, F3;, G;; and (i3 are upper triangular. Then the diagonal
elements of the matrix (F};,Gy;) and (Gss, H33) are generalized eigenvalues of (A, B). The rest of
the generalized eigenvalues are given by the matrix pair (F»,,G,,). Subsequent operations to
compute the eigenvalues of (A, B) need only be applied to the matrix (Fj,,G,); this can save a
significant amount of work if (F5,, G»,) is smaller than the original matrix pair (A, B). If no suitable
permutation exists (as is often the case), then there is no gain in efficiency or accuracy.

2. The balancing routine applies a diagonal similary transformation to (F,G), to make the rows and
columns of (F5,,G,,) as close as in norm as possible:

I Fi Fy Fis I
DFD ' = D, Fy  Fy Dy,
I Py I
I G G Gy I
DGD ™' = D, Gy Ga Dy
I Gas I

This transformation usually improves the accuracy of computed generalized eigenvalues and
eigenvectors. However, there are exceptional occasions when this transformation increases the norm
of the pencil; in this case accuracy could be lower with diagonal balancing.

See Anderson et al. (1999) for further details.

2.13 Block Algorithms

A number of the routines in this chapter use what is termed a block algorithm. This means that at each
major step of the algorithm a block of rows or columns is updated, and much of the computation is
performed by matrix-matrix operations on these blocks. The matrix-matrix operations are performed by
calls to the Level 3 BLAS (see Chapter F06), which are the key to achieving high performance on many
modern computers. In the case of the QR algorithm for reducing an upper Hessenberg matrix to Schur
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form, a multishift strategy is used in order to improve performance. See Golub and van Loan (1996) or
Anderson et al. (1999) for more about block algorithms and the multishift strategy.

The performance of a block algorithm varies to some extent with the block size — that is, the number of
rows or columns per block. This is a machine-dependent parameter, which is set to a suitable value when
the library is implemented on each range of machines. Users of the library do not normally need to be
aware of what value is being used. Different block sizes may be used for different routines. Values in the
range 16 to 64 are typical.

On more conventional machines there is often no advantage from using a block algorithm, and then the
routines use an unblocked algorithm (effectively a block size of 1), relying solely on calls to the Level 2
BLAS (see Chapter FO6 again).

The only situation in which a user needs some awareness of the block size is when it affects the amount of
workspace to be supplied to a particular routine. This is discussed in Section 3.4.3.

3 Recommendations on Choice and Use of Available Routines

Note: refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Available Routines

The tables in the following subsections show the routines which are provided for performing different
computations on different types of matrices. Each entry in the table gives the NAG routine name, the
LAPACK single precision name, and the LAPACK double precision name (see Section 3.2).

For many computations it is necessary to call two or more routines in sequence some commonly required
sequences of routines are indicated below; an asterisk (x) against a routine name means that the sequence
of calls is illustrated in the example program for that routine. (But remember that Black Box routines for
the same computations may be provided in Chapter FO2 or Chapter F04.)

3.1.1 Orthogonal factorizations

Routines are provided for QR factorization (with and without column pivoting), and for L() factorization
(without pivoting only), of a general real or complex rectangular matrix.

The factorization routines do not form the matrix ) explicitly, but represent it as a product of elementary
reflectors (see Section 3.3.6). Additional routines are provided to generate all or part of () explicitly if it is
required, or to apply @ in its factored form to another matrix (specifically to compute one of the matrix

products QC, Q'C, cQ or Q" with QT replaced by QH if C and @) are complex).
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Factorize | Factorize | Generate | Apply
without with Matrix Q | matrix Q
pivoting | pivoting

QR factorization, | FOSAEF FO8BEF FOBAFF FO8AGF
real matrices SGEQRF SGEQPF SORGQR SORMQR
DGEQRF DGEQPF DORGQR DORMQR

L@ factorization, | FOSAHF FO8AJF FO8AKF
real matrices SGELQF SORGLQ SORMLQ
DGELQF DORGLQ DORMLQ

QR factorization, | FOSASF FO8BSF FO8SATF FO8AUF
complex matrices | CGEQRF CGEQPF CUNGQR CUNMQR
ZGEQRF ZGEQPF ZUNMQR ZUNGQR

LQ factorization, | FOSAVF FOBAWF FOBAXF
complex matrices | CGELQF CUNGLQ CUNMQL
ZGELQF ZUNGLQ ZUNMLQ

To solve linear least-squares problems, as described in Section 2.2.1 or Section 2.2.3, routines based on the
QR factorization can be used:

real data, full-rank problem FO8AEF*, FO8AGF, FO6YJF
complex data, full-rank problem FO8ASF*, FO8AUF, FO6ZJF
real data, rank-deficient problem FO8BEF*, FO8AGF, FO6YJF
complex data, rank-deficient problem FO8BSF*, FO8AUF, FO6ZJF

To find the minimum norm solution of under-determined systems of linear equations, as described in
Section 2.2.2, routines based on the L() factorization can be used:

real data, full-rank problem FO8AHF*, FO6YJF, FO8AKF
complex data, full-rank problem FO8AVF*, FO6ZJF, FO8AXF

3.1.2 Singular value problems

Routines are provided to reduce a general real or complex rectangular matrix A to real bidiagonal form B
by an orthogonal transformation A = QBP” (or by a unitary transformation A = QBP" if A is complex).
Different routines allow a full matrix A to be stored conventionally (see Section 3.3.1), or a band matrix to
use band storage (see Section 3.3.3).

The routines for reducing full matrices do not form the matrix @) or P explicitly; additional routines are
provided to generate all or part of them, or to apply them to another matrix, as with the routines for
orthogonal factorizations. Explicit generation of () or P is required before using the bidiagonal QR
algorithm to compute left or right singular vectors of A.

The routines for reducing band matrices have options to generate ) or P if required.

Further routines are provided to compute all or part of the singular value decomposition of a real
bidiagonal matrix; the same routines can be used to compute the singular value decomposition of a real or
complex matrix that has been reduced to bidiagonal form.
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Reduce to | Generate | Apply Reduce band | SVD of
bidiagonal | matrix Q | matrix Q | matrix to bidiagonal
form or PT or P bidiagonal form (QR
form algorithm)
real matrices FO8KEF FO8KFF FO8KGF FOSLEF FO8SMEF
SGEBRD SORGBR SORMBR SGBBRD SBDSQR
DGEBRD DORGBR DORMBR DGBBRD DBDSQR
complex matrices | FOSKSF FO8KTF FO8KUF FO8LSF FO8MSF
CGEBRD CUNGBR CUNMBR CGBBRD CBDSQR
ZGEBRD ZUNGBR ZUNMBR ZGBBRD ZBDSQR

To compute the singular values and vectors of a rectangular matrix, as described in Section 2.3, use the
following sequence of calls:

Rectangular matrix (standard storage)

real matrix, singular values and vectors FOSKEF, FOSKFF*, FOSMEF
complex matrix, singular values and vectors FO8KSF, FO8KTF*, FO8MSF

Rectangular matrix (banded)

real matrix, singular values and vectors FOSLEF, FO8SMEF
complex matrix, singular values and vectors FO8SLSF, FO8MSF

To use the singular value decomposition to solve a linear least-squares problem, as described in Section 2.4,
the following routines are required:

real data: FO8KEF, FO8BKGF, FO8KFF, FOSMEF, FO6YAF
complex data: FO8SKSF, FOSKUF, FOSKTF, FOSMSF, FO6ZAF

3.1.3 Symmetric eigenvalue problems

Routines are provided to reduce a real symmetric or complex Hermitian matrix A to real tridiagonal form
T by an orthogonal similarity transformation A = QT'Q” (or by a unitary transformation A = QTQ" if A
is complex). Different routines allow a full matrix A to be stored conventionally (see Section 3.3.1) or in
packed storage (see Section 3.3.2); or a band matrix to use band storage (see Section 3.3.3).

The routines for reducing full matrices do not form the matrix ) explicitly; additional routines are
provided to generate (), or to apply it to another matrix, as with the routines for orthogonal factorizations.
Explicit generation of () is required before using the QR algorithm to find all the eigenvectors of A;
application of () to another matrix is required after eigenvectors of 7' have been found by inverse iteration,
in order to transform them to eigenvectors of A.

The routines for reducing band matrices have an option to generate () if required.
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Reduce to | Generate | Apply
tridiagonal | matrix Q | matrix Q
form
real symmetric matrices FOSFEF FOSFFF FO8FGF
SSYTRD SORGTR SORMTR
DSYTRD DORGTR DORMTR
real symmetric matrices FO8GEF FO8GFF FO8GGF
(packed storage) SSPTRD SOPGTR SOPMTR
DSPTRD DOPGTR DOPMTR
real symmetric band matrices FOSHEF
SSBTRD
DSBTRD
complex Hermitian matrices FO8FSF FOSFTF FO8FUF
CHETRD CUNGTR CUNMTR
ZHETRD ZUNGTR ZUNMTR
complex Hermitian matrices FO8GSF FO8GTF FO8GUF
(packed storage) CHPTRD CUPGTR CUPMTR
ZHPTRD ZUPGTR ZUPMTR
complex Hermitian band matrices | FOSHSF
CHBTRD
ZHBTRD

A variety of routines are provided to compute eigenvalues and eigenvectors of the real symmetric
tridiagonal matrix 7, some computing all eigenvalues and eigenvectors, some computing selected
eigenvalues and eigenvectors. The same routines can be used to compute eigenvalues and eigenvectors of
a real symmetric or complex Hermitian matrix which has been reduced to tridiagonal form.

Eigenvalues and eigenvectors of real symmetric tridiagonal matrices:

The original (non-reduced) matrix is Real or Complex Hermitian

all eigenvalues (root-free QR algorithm) FO8JFF
all eigenvalues (root-free QR algorithm called by divide and conquer)  FO8JCF
selected eigenvalues (bisection) FO08JJF

The original (non-reduced) matrix is Real

all eigenvalues and eigenvectors (QR algorithm) FO8JEF
all eigenvalues and eigenvectors (divide and conquer) FO8JCF
all eigenvalues and eigenvectors (positive-definite case) FO8JGF
selected eigenvectors (inverse iteration) FO8JKF

The original (non-reduced) matrix is Complex Hermitian

all eigenvalues and eigenvectors (QR algorithm) FO8JSF
all eigenvalues and eigenvectors (positive-definite case) FO8JUF
selected eigenvectors (inverse iteration) FO8JXF

The following sequences of calls may be used to compute various combinations of eigenvalues and
eigenvectors, as described in Section 2.5.

Sequences for computing eigenvalues and eigenvectors
Real Symmetric matrix (standard storage)

all eigenvalues and eigenvectors (using divide and conquer) FO8FCF
all eigenvalues and eigenvectors (using QR algorithm) FO8FEF, FO8FFF*, FO8JEF
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selected eigenvalues and eigenvectors (bisection and inverse iteration)

Real Symmetric matrix (packed storage)

all eigenvalues and eigenvectors (using divide and conquer)
all eigenvalues and eigenvectors (using Q)R algorithm)
selected eigenvalues and eigenvectors (bisection and inverse iteration)

Real Symmetric banded matrix

all eigenvalues and eigenvectors (using divide and conquer)
all eigenvalues and eigenvectors (using Q)R algorithm)

Complex Hermitian matrix (standard storage)

all eigenvalues and eigenvectors (using divide and conquer)
all eigenvalues and eigenvectors (using Q)R algorithm)
selected eigenvalues and eigenvectors (bisection and inverse iteration)

Complex Hermitian matrix (packed storage)

all eigenvalues and eigenvectors (using divide and conquer)
all eigenvalues and eigenvectors (using Q)R algorithm)
selected eigenvalues and eigenvectors (bisection and inverse iteration)

Complex Hermitian banded matrix

all eigenvalues and eigenvectors (using divide and conquer)
all eigenvalues and eigenvectors (using Q)R algorithm)

3.1.4 Generalized symmetric-definite eigenvalue problems

Introduction — F08

FO8FEF, FO08JJF, FO8JKF,

FO8SFGEF*

FO8GCF

FO8GEF, FO8GFF*, FO8JEF
FO8GEF, FO08JJF, FO8JKF,

FO8GGEF*

FO8HCF
FO8S8HEF*, FO8JEF

FO8FQF

FO8FSF, FO8FTF*, FO8JSF
FO8FSF, FO08JJF, FO08JXF,

FO8SFUF*

FO8GQF

FO8GSF, FO8GTF*, FO8JSF
FO8GSF, FO08JJF, FO8JXF,

FO8GUF*

FO8SHQF
FO8HSF*, FO8JSF

Routines are provided for reducing each of the problems Ax = ABz, ABx = Az or BAz = Az to an
equivalent standard eigenvalue problem C'y = Ay. Different routines allow the matrices to be stored either
conventionally or in packed storage. The positive-definite matrix B must first be factorized using a routine
from Chapter FO7. There is also a routine which reduces the problem Ax = ABxz where A and B are
banded, to an equivalent banded standard eigenvalue problem; this uses a split Cholesky factorization for

which a routine in Chapter FO8 is provided.

Reduce to Reduce to

Reduce to

standard problem | standard problem | standard problem
(packed storage) (band matrices)

real symmetric matrices FO8SEF FOSTEF FOSUEF
SSYGST SSPGST SSBGST
DSYGST DSPGST DSBGST
complex Hermitian matrices | FO8SSF FO8TSF FO8USF
CHEGST CHPGST CHBGST
ZHEGST ZHPGST ZHBGST
The equivalent standard problem can then be solved using the routines discussed in Section 3.1.3. For
example, to compute all the eigenvalues, the following routines must be called:
real symmetric-definite problem FO7FDF, FO8SEF*, FOSFEF, FO8JFF
real symmetric-definite problem, packed storage FO7GDF, FO8TEF*, FO8GEF, FO8JFF
real symmetric-definite banded problem FO8UFFx*, FOSUEF*, FOSHEF, FO8JFF
complex Hermitian-definite problem FO7FRF, FO8SSF*, FOSFSF, FOS8JFF
complex Hermitian-definite problem, packed storage FO7GRF, FO8TSF*, FO8GSF, FO8JFF
complex Hermitian-definite banded problem FO8UTF*, FO8USF*, FOSHSF, FO8JFF
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If eigenvectors are computed, the eigenvectors of the equivalent standard problem must be transformed
back to those of the original generalized problem, as indicated in Section 2.6; routines from Chapter FO6
may be used for this.

3.1.5 Nonsymmetric eigenvalue problems

Routines are provided to reduce a general real or complex matrix A to upper Hessenberg form H by an

orthogonal similarity transformation A = QHQ" (or by a unitary transformation A = QHQ" if A is
complex).

These routines do not form the matrix () explicitly; additional routines are provided to generate (), or to
apply it to another matrix, as with the routines for orthogonal factorizations. Explicit generation of Q) is
required before using the QR algorithm on H to compute the Schur vectors; application of () to another
matrix is needed after eigenvectors of H have been computed by inverse iteration, in order to transform
them to eigenvectors of A.

Routines are also provided to balance the matrix before reducing it to Hessenberg form, as described in
Section 2.12.6. Companion routines are required to transform Schur vectors or eigenvectors of the
balanced matrix to those of the original matrix.

Reduce to | Generate | Apply Balance | Backtransform
Hessenberg | matrix Q | matrix Q vectors after
form balancing

real matrices FO8NEF FO8NFF FO8NGF FO8SNHF | FO8NJF
SGEHRD SORGHR SORMHR SGEBAL SGEBAK
DGEHRD DORGHR DORMHR DGEBAL DGEBAK

complex matrices | FOSNSF FOSNTF FO8SNUF FO8NVF FO8NWF
CGEHRD CUNGHR CUNMHR CGEBAL CGEBAK
ZGEHRD ZUNGHR ZUNMHR ZGEBAL ZGEBAK

Routines are provided to compute the eigenvalues and all or part of the Schur factorization of an upper
Hessenberg matrix. FEigenvectors may be computed either from the upper Hessenberg form by inverse
iteration, or from the Schur form by back-substitution; these approaches are equally satisfactory for
computing individual eigenvectors, but the latter may provide a more accurate basis for a subspace
spanned by several eigenvectors.

Additional routines estimate the sensitivities of computed eigenvalues and eigenvectors, as discussed in
Section 2.12.5.

Eigenvalues Eigenvectors | Eigenvectors | Sensitivities of
and Schur from from Schur | eigenvalues
factorization Hessenberg factorization | and
(OR algorithm) | form (inverse eigenvectors
iteration)
real matrices FOSPEF FOSPKF FOSQKF FOSQLF
SHSEQR SHSEIN STREVC STRSNA
DHSEQR DHSEIN DTREVC DTRSNA
complex matrices | FO8PSF FO8PXF FO8QXF FO8QYF
CHSEQR CHSEIN CTREVC CTRSNA
ZHSEQR ZHSEIN ZTREVC ZTRSNA

Finally routines are provided for re-ordering the Schur factorization, so that eigenvalues appear in any
desired order on the diagonal of the Schur form. The routines FOSQFF and FOSQTF simply swap two
diagonal elements or blocks, and may need to be called repeatedly to achieve a desired order. The routines
FO8QGF and FOSQUF perform the whole re-ordering process for the important special case where a
specified cluster of eigenvalues is to appear at the top of the Schur form; if the Schur vectors are re-
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ordered at the same time, they yield an orthonormal basis of the invariant subspace corresponding to the
specified cluster of eigenvalues. These routines can also compute the sensitivities of the cluster of
eigenvalues and the invariant subspace.

Reorder Schur | Reorder Schur factorization,
factorization find basis of invariant
subspace and estimate
sensitivities
real matrices FO8QFF FO8QGF
STREXC STRSEN
DTREXC DTRSEN
complex matrices | FO8QTF FO8SQUF
CTREXC CTRSEN
ZTREXC ZTRSEN

The following sequences of calls may be used to compute various combinations of eigenvalues, Schur
vectors and eigenvectors, as described in Section 2.9:

real matrix, all eigenvalues and Schur factorization FOSNEF, FOSNFF*, FOSPEF

real matrix, all eigenvalues and selected eigenvectors FO8NEF, FOSPEF, FO8PKF,
FO8NGF*

real matrix, all eigenvalues and eigenvectors (with balancing) FO8NHF*, FOSNEF, FO8NFF,
FO8PEF, FO8PKF, FO8BNJF

complex matrix, all eigenvalues and Schur factorization FO8SNSF, FOSNTF*, FOSPSF

complex matrix, all eigenvalues and selected eigenvectors FO8NSF, FO8PSF, FO8SPXF,
FO8NUF*

complex matrix, all eigenvalues and eigenvectors (with balancing) FO8NVF*, FO8NSF, FO8NTF,
FO8PSF, FO8PXF, FO8SNWF

3.1.6 Generalized nonsymmetric eigenvalue problems

Routines are provided to reduce a real or complex matrix pair (A, R;), where A, is general and R, is
upper triangular, to generalized upper Hessenberg form by orthogonal transformations A, = Q,HZT,

R, = Q,RZ[, (or by unitary transformations A, = Q,HZ{, R = Q,R,Z{, in the complex case). These
routines can optionally return @), and/or Z;. Note that to transform a general matrix pair (A, B) to the

form (A, R;) a QR factorization of B (B = QRI) should first be performed and the matrix A; obtained
as A, = QT A (see Section 3.1.1 above).

Routines are also provided to balance a general matrix pair before reducing it to generalized Hessenberg
form, as described in Section 2.12.8. Companion routines are provided to transform vectors of the
balanced pair to those of the original matrix pair.

Reduce to Balance | Backtransform
generalized vectors after
Hessenberg form balancing

real matrices FO8WEF FO8WHF | FO8WJF
SGGHRD SGGBAL | SGGBAK
DGGHRD DGGBAL | DGGBAK

complex matrices | FOSWSF FOBWVF | FOSWWF
CGGHRD CGGBAL | CGGBAK
GZZHRD ZGGBAL | ZGGBAK

Routines are provided to compute the eigenvalues (as the pairs («, 3)) and all or part of the generalized
Schur factorization of a generalized upper Hessenberg matrix pair. Eigenvectors may be computed from
the generalized Schur form by back-substitution.
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Eigenvalues
and generalized
Schur factorization

Eigenvectors
from generalized
Schur factorization

(QZ algorithm)

real matrices FO8SXEF FO8YKF
SHGEQZ STGEVC
DHGEQZ DTGEVC
complex matrices | FO8XSF (CHGEQZ/ZHGEQZ) | FO8YXF
CHGEQZ CTGEVC
ZHGEQZ ZTGEVC

The following sequences of calls may be used to compute various combinations of eigenvalues,
generalized Schur vectors and eigenvectors

real matrix pair, all eigenvalues (with balancing) FO8WHF, FOSAEF, FO8SAGF,
FOBWEF, FO8XEFx*

FOBAEF, FOBAGF, FOSAFF,
FO8WEF, FO8XEF

FO8SWHF, FOSAEF, FO8AGF,
FO6QHF, FO6QFF, FOSAFF,
FOBWEF, FOSXEF, FO8YKFx*,
FO8WJF

FO8WVF, FO8ASF, FO8SAUF,
FO8WSF, FO8XSEx*

real matrix pair, all eigenvalues and generalized Schur factorization

real matrix pair, all eigenvalues and eigenvectors (with balancing)

complex matrix pair, all eigenvalues (with balancing)

complex matrix pair, all eigenvalues and generalized Schur FO8ASF, FOSAUF, FOSATF,
factorization FO8WSF, FO8XSF

complex matrix pair, all eigenvalues and eigenvectors (with FO8WVF, FO8ASF, FO8AUF,
balancing) FO6THF, FO6TFF, FOSATF,

FO8WSF, FO8XSF, FO8YXFx*,
FOSWWF

3.1.7 Sylvester’s equation

Routines are provided to solve the real or complex Sylvester equation AX + XB = C, where A and B are
upper quasi-triangular if real, or upper triangular if complex. To solve the general form of Sylvester’s
equation in which A and B are general square matrices, A and B must be reduced to upper (quasi-)
triangular form by the Schur factorization, using routines described in Section 3.1.5. For more details, see
the documents for the routines listed below.

solve Sylvester’s equation

real matrices FO8QHF
STRSYL

DTRSYL

FO8QVF
CTRSYL
ZTRSYL

complex matrices

3.2 NAG Names and LAPACK Names

As well as the NAG routine name (beginning FO08-), the tables in Section 3.1 show the LAPACK routine
names in both single and double precision.

The routines may be called either by their NAG names or by their LAPACK names. When using a single
precision implementation of the NAG Library, the single precision form of the LAPACK name must be
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used (beginning with S- or C-); when using a double precision implementation of the NAG Library, the
double precision form of the LAPACK name must be used (beginning with D- or Z-).

References to FO8 routines in the manual normally include the LAPACK single and double precision
names, in that order — for example FOBAEF (SGEQRF/DGEQRF) (SGEQRF/DGEQRF). The LAPACK
routine names follow a simple scheme (which is similar to that used for the BLAS in Chapter F06). Each
name has the structure XYYZZZ, where the components have the following meanings:

— the initial letter X indicates the data type (real or complex) and precision:

S — real, single precision (in Fortran 77, REAL)

D — real, double precision (in Fortran 77, DOUBLE PRECISION)

C - complex, single precision (in Fortran 77, COMPLEX)

Z — complex, double precision (in Fortran 77, COMPLEX*16 or DOUBLE COMPLEX)

— the 2nd and 3rd letters YY indicate the type of the matrix A or matrix pair (A, B) (and in some cases
the storage scheme):

BD - bidiagonal

GB - general band

GE - general

GG - general pair (B may be triangular)

HG — generalized upper Hessenberg

HS — upper Hessenberg

OP - (real) orthogonal (packed storage)

UP — (complex) unitary (packed storage)

OR - (real) orthogonal

UN — (complex) unitary

PT — symmetric or Hermitian positive-definite tridiagonal
SB — (real) symmetric band

HB - (complex) Hermitian band

SP — symmetric (packed storage)

HP — Hermitian (packed storage)

ST — (real) symmetric tridiagonal

SY - symmetric

HE — Hermitian

TG - triangular pair (one may be quasi-triangular)
TR - triangular (or quasi-triangular)

— the last 3 letters ZZZ indicate the computation performed. For example, QRF is a QR factorization.

Thus the routine SGEQRF performs a QR factorization of a real general matrix in a single precision
implementation of the Library; the corresponding routine in a double precision implementation is
DGEQREF.

Some sections of the routine documents — Section 2 (Specification) and Section 9.1 (Example program) —
print the LAPACK name in bold italics, according to the NAG convention of using bold italics for
precision-dependent terms — for example, sgegqrf, which should be interpreted as either SGEQRF (in single
precision) or DGEQREF (in double precision).

3.3 Matrix Storage Schemes
In this chapter the following storage schemes are used for matrices:
— conventional storage in a two-dimensional array;
— packed storage for symmetric or Hermitian matrices;
— packed storage for orthogonal or unitary matrices;
— band storage for general, symmetric or Hermitian band matrices;

— storage of bidiagonal, symmetric or Hermitian tridiagonal matrices in two one-dimensional arrays.
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These storage schemes are compatible with those used in Chapter FO6 and Chapter F07, but different
schemes for packed, band and tridiagonal storage are used in a few older routines in Chapter FO1, Chapter
F02, Chapter FO3 and Chapter FO4.

In the examples below, * indicates an array element which need not be set and is not referenced by the
routines. The examples illustrate only the relevant leading rows and columns of the arrays; array
arguments may of course have additional rows or columns, according to the usual rules for passing array
arguments in Fortran 77.

3.3.1 Conventional storage

The default scheme for storing matrices is the obvious one: a matrix A is stored in a two-dimensional array
A, with matrix element a;; stored in array element A(3, j).

If a matrix is triangular (upper or lower, as specified by the argument UPLO when present), only the
elements of the relevant triangle are stored; the remaining elements of the array need not be set. Such
elements are indicated by * in the examples below. For example, when n = 4:

UPLO Triangular matrix A Storage in array A
Al 1
U aip Qi a3 Gy app G a3 Qg
Gy Qp3 Ay4 ¥ Gp Gp3 Qg
as3 A3y * * ass3 a3y
Qyq * * * Qg4
18 an app  * *
a1 G a1 Gy *
az; G4z 433 as; a4z asz
Qg1 Q4 Q43 Qyq Qg1 Qg Q43 Qg4

Similarly, if the matrix is upper Hessenberg, or if the matrix is quasi-upper triangular, elements below the
first subdiagonal need not be set.

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower triangle of the
matrix (as specified by UPLO) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set. For example, when n = 4:

UPLO Hermitian matrix A Storage in array A
) 1
U app Gz a3 Qi aip Az a3 Ay
G2 Gy Qp3 Oy ¥ Gyp Gz O
a3 Q3 Q33 A3y * * a3z Q34
Q14 Qx4 Q34 Oag * * ¥ Gyq
T aj; Gy G311 Qg aj;p ko k
a1 Gy Q3 Qg ay; Ay Ok
Q31 Q3 (33 (43 31 A3 433
Q41 Qg Q43 Qyq Q41 Q4o Q43 Qyq

3.3.2 Packed storage

Symmetric and Hermitian matrices may be stored more compactly, if the relevant triangle (again as
specified by UPLO) is packed by columns in a one-dimensional array. In Chapter FO7 and Chapter F08,
arrays that hold matrices in packed storage, have argument names ending in 'P'. So:

if UPLO ='U!, q;; is stored in AP(i + j(j — 1)/2) for i < j;
if UPLO =L, q;; is stored in AP(i + (2n — j)(j — 1)/2) for j <.

For example:
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UPLO | Triangle of matrix A Packed storage in array AP

Al 1
9) app G a3 ag a1p G120y A13G023033 (14024034044
N N e e’
Qpp Q3  Gpg
azz Q34
Q44
1) '
L apy 411021031041 22032047 (33043 A4q
N e N e N
5 )
az; Gz 0433

Q41 Qg Q43 Qg4

Note that for symmetric matrices, packing the upper triangle by columns is equivalent to packing the lower
triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle by
rows. For Hermitian matrices, packing the upper triangle by columns is equivalent to packing the
conjugate of the lower triangle by rows; packing the lower triangle by columns is equivalent to packing the
conjugate of the upper triangle by rows.

3.3.3 Band storage

A general m by n band matrix with k; subdiagonals and k, superdiagonals may be stored compactly in a
two-dimensional array with k; + k&, + 1 rows and n columns. Columns of the matrix are stored in
corresponding columns of the array, and diagonals of the matrix are stored in rows of the array. This
storage scheme should be used in practice only if k;, k, < n, although routines in Chapter FO7 and
Chapter FO8 work correctly for all values of k; and k,. In Chapter FO7 and Chapter FO8, arrays that hold

matrices in band storage have argument names ending in 'B'. So:
a;; is stored in AB(k, + 1+ — j,7) for max(1,j —k,) <i < min(m, j + k).

For example, when m =6, n =35, k;, =2 and k, = 1:

general band matrix A Band storage in array AB
ayjp  ap * Q2 Q3 Q34 Q45
azr Gy Ap3 ayp QG Q33 Qg4 G55
az1 QA3 A3z A3y Ap1 A3y Q43 Q54 Ges
G4y Q43 Qqq Q45 a3 Q4o Q53 Qg *
As3  QAs4 Q55
Qg4 Qg5

A symmetric or Hermitian band matrix with k& subdiagonals and superdiagonals may be stored more
compactly in a two-dimensional array with k£ + 1 rows and n columns. Only the upper or lower triangle
(as specified by UPLO) need to be stored. So:

if UPLO ="'U', a;; is stored in AB(k+ 1+ — j,j) for max(1,j— k) <i < j;
if UPLO =L, a;; is stored in AB(1 +i — j, j) for j <i < min(n, j+ k).

For example, when n =5 and k = 2:
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UPLO | Hermitian band matrix A | Band storage in array AB

' 1

U ap; Qi a3 * * a3 Qx4 0a3s
Gy Gy A3 Ap4 * A1y A3 (34 Q45
Q13 Gy; Q33 Q34 G35 ajy Gy A3z Q44 Gss

Qo4 Q34 Quq Q45
a3s Q45 Q55

) Ll — —

L app Gz a3 app Gz A3z Qg4 Q55
ax; Gy Q3 Qg Gy1 A3y Q43 Q54 ¥
az; a3y Q33 Q43 0Gs3 az;  Qgqp Gs3 ok *

Ggy (43 Q44 Q54
As53  Qs4 QG55

3.3.4 Tridiagonal and bidiagonal matrices

A symmetric tridiagonal or bidiagonal matrix is stored in two one-dimensional arrays, one of length n
containing the diagonal elements, and one of length n — 1 containing the off-diagonal elements. (Older
routines in Chapter FO2 store the off-diagonal elements in elements 2 : n of a vector of length n.)

3.3.5 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal matrices that are by definition purely real. In addition, some
complex triangular matrices computed by FOS8 routines are defined by the algorithm to have real diagonal
elements — in QR factorization, for example.

If such matrices are supplied as input to FO8 routines, the imaginary parts of the diagonal elements are not
referenced, but are assumed to be zero. If such matrices are returned as output by FO8 routines, the
computed imaginary parts are explicitly set to zero.

3.3.6 Representation of orthogonal or unitary matrices

A real orthogonal or complex unitary matrix (usually denoted @) is often represented in the NAG Library
as a product of elementary reflectors — also referred to as elementary Householder matrices (usually
denoted H;). For example,

Q=HH- - H,.

Most users need not be aware of the details, because routines are provided to work with this representation,

either to generate all or part of Q explicitly, or to multiply a given matrix by Q or Q7 (Q in the complex
case) without forming @) explicitly.

Nevertheless, the following further details may occasionally be useful.

An elementary reflector (or elementary Householder matrix) H of order n is a unitary matrix of the form
H=1-7w" (4)

where 7 is a scalar, and v is an n element vector, with |7*||v]|; = 2 x Re(7); v is often referred to as the
Householder vector. Often v has several leading or trailing zero elements, but for the purpose of this
discussion assume that H has no such special structure.

There is some redundancy in the representation (4), which can be removed in various ways. The
representation used in Chapter FO8 and in LAPACK (which differs from those used in some of the routines
in Chapter FO1, Chapter F02, Chapter FO4 and Chapter F06) sets v; = 1; hence v; need not be stored. In
real arithmetic, 1 < 7 < 2, except that 7 = 0 implies H = [I.

In complex arithmetic, 7 may be complex, and satisfies 1 < Re(7) <2 and |7 — 1| < 1. Thus a complex
H is not Hermitian (as it is in other representations), but it is unitary, which is the important property. The
advantage of allowing 7 to be complex is that, given an arbitrary complex vector x, H can be computed so
that
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Hz = p(1,0,...,0)"

with real 3. This is useful, for example, when reducing a complex Hermitian matrix to real symmetric
tridiagonal form, or a complex rectangular matrix to real bidiagonal form.

3.4 Parameter Conventions
3.4.1 Option parameters

Most routines in this chapter have one or more option parameters, of type CHARACTER. The
descriptions in Section 5 of the routine documents refer only to upper case values (for example 'U' or 'L");
however in every case, the corresponding lower case characters may be supplied (with the same meaning).
Any other value is illegal.

A longer character string can be passed as the actual parameter, making the calling program more readable,
but only the first character is significant. (This is a feature of Fortran 77.) For example:

CALL SSYTRD (’Upper’,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, M or N) to be passed as zero, in which case the
computation (or part of it) is skipped. Negative dimensions are regarded as an error.

3.4.3 Length of work arrays

A number of routines implementing block algorithms require workspace sufficient to hold one block of
rows or columns of the matrix if they are to achieve optimum levels of performance — for example,
workspace of size n x nb, where nb is the optimum block size. In such cases, the actual declared length
of the work array must be passed as a separate argument LWORK, which immediately follows WORK in
the argument-list.

The routine will still perform correctly when less workspace is provided: it simply uses the largest block
size allowed by the amount of workspace supplied, as long as this is likely to give better performance than
the unblocked algorithm. On exit, WORK(1) contains the minimum value of LWORK which would allow
the routine to use the optimum block size; this value of LWORK can be used for subsequent runs.

If LWORK indicates that there is insufficient workspace to perform the unblocked algorithm, this is
regarded as an illegal value of LWORK, and is treated like any other illegal parameter value (see
Section 3.4.4).

If you are in doubt how much workspace to supply and are concerned to achieve optimum performance,
supply a generous amount (assume a block size of 64, say), and then examine the value of WORK(1) on
exit.

3.4.4 Error-handling and the diagnostic parameter INFO

Routines in this chapter do not use the usual NAG Library error-handling mechanism, involving the
parameter IFAIL. Instead they have a diagnostic parameter INFO. (Thus they preserve complete
compatibility with the LAPACK specification.)

Whereas [FAIL is an Input/Output parameter and must be set before calling a routine, INFO is purely an
Output parameter and need not be set before entry.

INFO indicates the success or failure of the computation, as follows:
INFO = 0: successful termination
INFO < 0: failure in the course of computation, control returned to the calling program

If the routine document specifies that the routine may terminate with INFO < 0, then it is essential to test
INFO on exit from the routine. (This corresponds to a soft failure in terms of the usual NAG error-
handling terminology.) No error message is output.

[NP3546/20] F08.29



Introduction — F08

NAG Fortran Library Manual

All routines check that input parameters such as N or LDA or option parameters of type CHARACTER
have permitted values. If an illegal value of the ¢th parameter is detected, INFO is set to —i, a message is
output, and execution of the program is terminated. (This corresponds to a hard failure in the usual NAG
terminology.)

4
4.1

Decision Trees

General purpose routines (eigenvalues and eigenvectors)

Tree 1: Real Symmetric Matrices

Are dl the
; es
Arlee|gen_valu?e£ Y cigenvalues yes Is A tridiagonal? Y& | FosJFF or
only required? required? ’ FOSJCF
no
no (FOSHEF
— yes yes
Is A tridiagonal? FOBJIF 's 2 ‘i‘b,"j‘“d FOSJFF) or
matrix: FOBHEF
no no
yes
'SA?bf;‘”d FOBHEF Isone triangle | yes | (FOBGEF
matrix? FOBJIF of Astored asa FO8JFF) or
no linear array? FO8GCF
no
'i :ne tr;‘"g'e yes | FOBGEF no
of Astored asa
FOBJJF
linear array? (FOBFEF
FO8JFF) or
no FOSFCF
FOSFEF FO8JF
Are al
] a d yes es
qgenv uesan Is A tridiagonal ? Y FOBJEF or
eigenvectors FO8JCF
required? no
IsAaband yes (FOBHEF
matrix? FOBJEF) or
) FO8HCF
no
Is one triangle (FOBGEF
Y€ | FO8GFF
of Astored asa
no linear array? FOBJEF) or
FOBGCF
no
(FOBFEF FOSFFF
FO8JEF) or
FOBFCF
. yes
Is A tridiagonal ? FOBJJF FOBIKF
| no
:; Z”;;;”iea yes | FOSGEF FOSJF
X FO8JKF FOBGGF
linear array?
[0

FO8FEF FO8JJF
FO8JKF FOBFGF
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Tree 2: Real Generalized Symmetric-definite Eigenvalue Problems

Are eigenvalues Y& | Areal the Y& | AreAand B band Y& | FO1BUF FO1BVF
only required? eigenvaluesrequired? matrices? FOBHEF FO8JFF

[

Are Aand B stored
with one triangle as
alinear array?

Y& | FO7GDF FOSTEF
FOSGEF FO8JFF

no
| no

FO7FDF FO8SEF
FOBFEF FOBJFF

AreAand B band Y& | FO1IBUF FOIBVF
matrices? FOSHEF FO8MF
no
| no
AreAand B stored yes
with one triangle as FO7GDF FOBTEF
alinear array? FOBGEF F08JJF

|n0

FO7FDF FOBSEF
FOSB8GEF FO8JJF

Are al eigenvalues ves AreAand B stored yes FO7GDF FOSTEF
and eigenvectors with one triangle as FO8GEF FO8GFF

no

FO7FDF FO8SEF FOBFEF
FO8FFF FOBJEF FO6Y JF

no

yes FO1BUF FO1BVF
FOSBHEF FO8JJF
FO2SDF

Are Aand B band
matrices?

no

FO7GDF FOSTEF
FO8GEF FO8JJF
FO8JKF FOBGGF
FO6PLF

AreAand B stored yes
with one triangle as
alinear array?

no

FO7FDF FO8SEF
FOSFEF FO8JJF
FO8JKF FOBFGF
FO6Y JF

Note: the routines for band matrices only handle the problem Ax = ABx; the other routines handle &l three types of problems
(Ax = ABx, ABx = Ax or BAX = Ax) except that, if the problem is BAx = Ax and eigenvectors are required, FO6PHF must be used
instead of FO6PLF, and FOBY FF instead of FOBY JF.
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Is A an upper
Hessenberg matrix?
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no

FOBNHF FOBNEF
FO8PEF

Is A an upper
Hessenberg matrix?

no

FOBNEF FOBNFF
FOBPEF FO8BNJF

Are eigenvalues yes
only required?

no
Is the Schur yes
factorization of A
required?

no
Are al eigenvectors yes
required?

no

yes

Is A an upper
Hessenberg matrix?

Is A an upper
Hessenberg matrix?

yes
FO8SPEF
yes
FO8PEF
yes

no

FOBNHF FOBNEF
FOSBNFF FOBPEF
FOBQKF FO8NJF

no

FOBNHF FOBNEF
FOBPEF FO8PKF
FOBNGF FO8NJF

FOSPEF FO8PKF

FOBPEF FO8QKF
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Tree 4: Real Generalized Nonsymmetric Eigenvalue Problems

Are eigenvalues yes Are A and B in generalized yes FOSX EF
only required? upper Hessenberg form?

no

FOBWHF FOBAEF FO8BAGF
FOSWEF FO8XEF

no

Isthe generalized yes
Schur factorization
of A and B required?

- - es
Are A and B in generalized L YS | rosxEF
upper Hessenberg form?

no

FOBAEF  FOBAGF
o FOBQHF ~ FOBQFF FOBAFF
FOBWEF FOBXEF FOBYKF

AreA gnd Bin yes FOSXEE
generalized upper FOSYKF
Hessenberg form?

no

FOSWHF FOSAEF
FOSAGF  FOBQHF
FOBQFF  FOSAFF
FOSWEF FOSXEF
FOSYKF  FOSWJF
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no

FOBFSF FOBJIF
FOBJXF FOBFUF

F08.34

Are yes Are al the yes IS A aband yes (FO8HSF
eigenvalues eigenvalues atrix? FO8JFF) or
only required? required? matnx: FO8HQF
I | no
no
I trianal (FOBGSF
IsAaband yes | FOSHSF ; anoizngsea Y | FosIFF) or
matrix? FO8JJF linear array? FOBGQF
| no I
no
Is one triangle es
no of A stored gs a ’ oo (FO8FSF
linear array? Rl FOBJFF) or
] FO8FQF
| no
FO8FSF FO8JJF
Are al
eigenvaluesand yes | I1sAaband Y& | (FosHSF
eigenvectors matrix? FOBJSF) or
required? FOBHQF
no
Is one triangl yes (FOBGSF
s oneftriangie FOSGTF
of A stored asa
linear array? FOBJSF) or
) FOBGQF
no no
(FOBFSF FOBFTF
FO8JSF) or
FO8FQF
Is one triangle
of Astored asa Y€S | FO8GSF FO8JJF
linear array? FO8JXF FOB8GUF
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Tree 6: Complex Generalized Hermitian-definite Eigenvalue Problems

Are eigenvalues
only required?

yes

no

Are dl eigenvalues
required?

yes

no

Are Aand B stored
with one triangle as
alinear array?

yes

AreAand B stored
with one triangle as
alinear array?

yes

Introduction — F08

no

FO7FRF FOBSSF
FO8FSF FO8JFF

no

FO7FRF FOBSSF
FO8GSF FOBJIF

Are dl eigenvalues
and eigenvectors
required?

yes

Are Aand B stored
with one triangle as
alinear array?

yes

FO7GRF FO8TSF
FO8GSF FO8JJF

no

no

FO7FRF FO8SSF
FOBFSF FOSFTF
FO8JSF FOBZJF

AreAand B stored
with one triangle as
alinear array?

yes

FO7GRF FO8TSF
FO8GSF FO8JJF FO8JXF
FOBGUF FOG6SLF

no

FO7FRF FO8SSF
FO8FSF FO8JJF
FO8JXF FO8FUF
FO6ZJF

FO7GRF FO8TSF
FO8GSF FO8GTF
FO6JSF FO6PSF

FO7GRF FO8TSF
FO8GSF FO8JFF

Note: the same routines are required for al three types of problem (Ax = ABx, ABx = Ax or BAx = Ax) except that, if the problem is
BAx = Ax and eigenvectors are required, FO6SHF must be used instead of FO6SLF, and FO6ZFF instead of FO6ZJF.
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Tree 7: Complex Nonhermitian Matrices

Are eigenvalues only yes Is A an upper Hessenberg e FOSPSE
required? matrix?
no
no
FOBNVF FOBNSF FO8PSF
Is the Schur
yes yes
factorization of A IsA qn’l:pper Hessenberg FO8PSF
required? matrix
no
FOBNSF FOBNTF FO8PSF
no FOSNWF
Are all eigenvectors yes Is A an upper Hessenberg yes
required? matrix? FOBPSE FOBQXF
no
no FOBNVF FOBNSF FOBNTF
FO8PSF FO8QXF FOSNWF
Is A an upper yes
H berg matrix? FO8PSF FO8PXF

no

FOBNVF FO8BNSF
FO8PSF FO8PXF
FOSNUF FOBNWF
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Tree 8: Complex Generalized Nonhermitian Eigenvalue Problems

Are eigenvalues yes Are A and B in generalized yes FOSXSF
only required? upper Hessenberg form?
no
no FOBWVF FO8ASF FOBAUF

FOBWSF  FO8XSF
I the generalized yes Are A and B in generalized yes
Schur factorization upper Hessenbe?g form? FO8XSF
of A and B required?

no

FOBASF  FOBAUF
o FOBTHF  FOBTFF FOBATF
FOBWSF  FOBXSF  FOBYXF

Are A gnd Bin yes FO8X SF
generalized upper FO8Y XF
Hessenberg form?

no

FOBWVF FO8ASF
FOBAUF FO6THF
FOG6TFF FOSATF
FOBWSF FO8XSF
FOBYXF FO8WWF
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4.2 General purpose routines (singular value decomposition)

Are singular
yes no yes
Is A acoompl e Is A banded? values only FOBK SF FO8M SF
matrix~ required?
yes
no
FO8L SF
o FOSM SFE FO8K SF FOBKTF
FO8BM SF
yes
Is A bidiagona ? FOBMEF
no
yes | FOSLEF
5
Is A banded FOSMEE
no
Are singular
values only yes FOBKEF
FOBMEF
required?

no

FOBKEF FOBKFF
FOSMEF
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5 Indexes of LAPACK routines

Real Matrices Complex Matrices
LAPACK LAPACK NAG LAPACK LAPACK NAG
single precision double precision single precision double precision
SBDSQR DBDSQR FO8MEF CBDSQR ZBDSQR FO8MSF
SGBBRD DGBBRD FO8SLEF CGBBRD ZGBBRD FO8LSF
SGEBAK DGEBAK FO8NJF CGEBAK ZGEBAK FO8NWF
SGEBAL DGEBAL FO8NHF CGEBAL ZGEBAL FO8NVF
SGEBRD DGEBRD FO8KEF CGEBRD ZGEBRD FO8KSF
SGEHRD DGEHRD FO8NEF CGEHRD ZGEHRD FO8NSF
SGELQF DGELQF FO8AHF CGELQF ZGELQF FO8AVF
SGEQPF DGEQPF FO8BEF CGEQPF ZGEQPF FO8BSF
SGEQRF DGEQRF FOBAEF CGEQRF ZGEQRF FO8ASF
SGGBAK DGGBAK FO8WJF CGGBAK ZGGBAK FO8WWF
SGGBAL DGGBAL FO8WHF CGGBAL ZGGBAL FO8WVF
SGGHRD DGGHRD FOSWEF CGGHRD ZGGHRD FO8WSF
SHGEQZ DHGEQZ FO8XEF CHBEVD ZHBEVD FO8HQF
SHSEIN DHSEIN FO8PKF CHBGST ZHBGST FO8USF
SHSEQR DHSEQR FO8PEF CHBTRD ZHBTRD FO8HSF
SOPGTR DOPGTR FO8GFF CHEEVD ZHEEVD FO8FQF
SOPMTR DOPMTR FO8GGF CHEGST ZHEGST FO8SSF
SORGBR DORGBR FO8KFF CHETRD ZHETRD FO8FSF
SORGHR DORGHR FO8NFF CHGEQZ ZHGEQZ FO8XSF
SORGLQ DORGLQ FO8AJF CHPEVD ZHPEVD FO8GQF
SORGQR DORGQR FO8BAFF CHPGST ZHPGST FO8TSF
SORGTR DORGTR FO8FFF CHPTRD ZHPTRD FO8GSF
SORMBR DORMBR FO8KGF CHSEIN ZHSEIN FO8PXF
SORMHR DORMHR FO8NGF CHSEQR ZHSEQR FO8PSF
SORMLQ DORMLQ FOBAKF CPBSTF ZPBSTF FO8UTF
SORMQR DORMQR FO8AGF CPTEQR ZPTEQR FO8JUF
SORMTR DORMTR FO8FGF CSTEIN ZSTEIN FO8JXF
SPBSTF DPBSTF FO8SUFF CSTEQR ZSTEQR FO8JSF
SPTEQR DPTEQR FO8JGF CTGEVC ZTGEVC FO8YXF
SSBEVD DSBEVD FO8HCF CTREVC ZTREVC FO8QXF
SSBGST DSBGST FO8SUEF CTREXC ZTREXC FO8QTF
SSBTRD DSBTRD FOSHEF CTRSEN ZTRSEN FO8QUF
SSPEVD DSPEVD FO8GCF CTRSNA ZTRSNA FO8QYF
SSPGST DSPGST FO8TEF CTRSYL ZTRSYL FO8QVF
SSPTRD DSPTRD FO8GEF CUNGBR ZUNGBR FO8KTF
SSTEBZ DSTEBZ FO8JJF CUNGHR ZUNGHR FO8NTF
SSTEIN DSTEIN FO8JKF CUNGLQ ZUNGLQ FOBAWF
SSTEQR DSTEQR FO8JEF CUNGQR ZUNGQR FO8ATF
SSTERF DSTERF FO8JFF CUNGTR ZUNGTR FOSFTF
SSTEVD DSTEVD FO8JCF CUNMBR ZUNMBR FO8KUF
SSYEVD DSYEVD FO8FCF CUNMHR ZUNMHR FO8NUF
SSYGST DSYGST FO8SEF CUNMLQ ZUNMLQ FO8AXF
SSYTRD DSYTRD FOSFEF CUNMQR ZUNMQR FO8AUF
STGEVC DTGEVC FO8YKF CUNMTR ZUNMTR FO8FUF
STREVC DTREVC FO8QKF CUPGTR ZUPGTR FO8GTF
STREXC DTREXC FO8QFF CUPMTR ZUPMTR FO8GUF
STRSEN DTRSEN FO8QGF
STRSNA DTRSNA FO8QLF
STRSYL DTRSYL FO8QHF

Table 4
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6 Routines Withdrawn or Scheduled for Withdrawal

None.
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