
F11 – Sparse Linear Algebra

F11XAF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

Computes a matrix-vector or transposed matrix-vector product involving a real sparse nonsymmetric
matrix stored in coordinate storage format.

2 Specification

SUBROUTINE F11XAF(TRANS, N, NNZ, A, IROW, ICOL, CHECK, X, Y, IFAIL)
INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), IFAIL
real A(NNZ), X(N), Y(N)
CHARACTER∗1 TRANS, CHECK

3 Description

F11XAF computes either the matrix-vector product y = Ax, or the transposed matrix-vector product
y = AT x, according to the value of the argument TRANS, where A is an n by n sparse nonsymmetric
matrix, of arbitrary sparsity pattern. The matrix A is stored in coordinate storage (CS) format (see
Section 2.1.1 of the Chapter Introduction). The array A stores all non-zero elements of A, while arrays
IROW and ICOL store the corresponding row and column indices respectively.

It is envisaged that a common use of F11XAF will be to compute the matrix-vector product required in
the application of F11BBF to sparse linear systems. An illustration of this usage appears in Section 9 of
the routine document for F11DDF.

4 References

None.

5 Parameters

1: TRANS — CHARACTER*1 Input

On entry: specifies whether or not the matrix A is transposed:

if TRANS = ’N’, then y = Ax is computed;
if TRANS = ’T’, then y = AT x is computed.

Constraint: TRANS = ’N’ or ’T’.

2: N — INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N ≥ 1.

3: NNZ — INTEGER Input

On entry: the number of non-zero elements in the matrix A.

Constraint: 1 ≤ NNZ ≤ N2.

4: A(NNZ) — real array Input

On entry: the non-zero elements in the matrix A, ordered by increasing row index, and by increasing
column index within each row. Multiple entries for the same row and column indices are not
permitted. The routine F11ZAF may be used to order the elements in this way.

[NP3390/19/pdf] F11XAF.1



F11XAF F11 – Sparse Linear Algebra

5: IROW(NNZ) — INTEGER array Input
6: ICOL(NNZ) — INTEGER array Input

On entry: the row and column indices of the non-zero elements supplied in A.

Constraints: IROW and ICOL must satisfy the following constraints (which may be imposed by a
call to F11ZAF):

1 ≤ IROW(i) ≤ N, 1 ≤ ICOL(i) ≤ N, for i = 1, 2, . . . ,NNZ.
IROW(i − 1) < IROW(i), or
IROW(i − 1) = IROW(i) and ICOL(i − 1) < ICOL(i), for i = 2, 3, . . . ,NNZ.

7: CHECK — CHARACTER*1 Input

On entry: specifies whether or not the CS representation of the matrix A should be checked:

if CHECK = ’C’, checks are carried on the values of N, NNZ, IROW and ICOL;
if CHECK = ’N’, none of these checks are carried out.

See also Section 8.2.

Constraint: CHECK = ’C’ or ’N’.

8: X(N) — real array Input

On entry: the vector x.

9: Y(N) — real array Output

On exit: the vector y.

10: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Errors and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, TRANS �= ’N’ or ’T’,
or CHECK �= ’C’ or ’N’.

IFAIL = 2

On entry, N < 1,
or NNZ < 1,
or NNZ > N2.

IFAIL = 3

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 ≤ IROW(i) ≤ N and 1 ≤ ICOL(i) ≤ N, for i = 1, 2, . . . ,NNZ.
IROW(i − 1) < IROW(i), or
IROW(i − 1) = IROW(i) and ICOL(i − 1) < ICOL(i), for i = 2, 3, . . . ,NNZ.

Therefore a non-zero element has been supplied which does not lie within the matrix A, is out
of order, or has duplicate row and column indices. Call F11ZAF to reorder and sum or remove
duplicates.

F11XAF.2 [NP3390/19/pdf]



F11 – Sparse Linear Algebra F11XAF

7 Accuracy

The computed vector y satisfies the error bound:

‖y − Ax‖∞ ≤ c(n)ε‖A‖∞‖x‖∞, if TRANS = ’N’, or
‖y − AT x‖∞ ≤ c(n)ε‖AT ‖∞‖x‖∞, if TRANS = ’T’,

where c(n) is a modest linear function of n, and ε is the machine precision.

8 Further Comments
8.1 Timing

The time taken for a call to F11XAF is proportional to NNZ.

8.2 Use of CHECK

It is expected that a common use of F11XAF will be to compute the matrix-vector product required in
the application of F11BBF to sparse linear systems. In this situation F11XAF is likely to be called many
times with the same matrix A. In the interests of both reliability and efficiency you are recommended to
set CHECK to ’C’ for the first of such calls, and to ’N’ for all subsequent calls.

9 Example

This example program reads in a sparse matrix A and a vector x. It then calls F11XAF to compute the
matrix-vector product y = Ax and the transposed matrix-vector product y = AT x.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* F11XAF Example Program Text
* Mark 18 Release. NAG Copyright 1997.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER LA, NMAX
PARAMETER (LA=10000,NMAX=1000)

* .. Local Scalars ..
INTEGER I, IFAIL, N, NNZ
CHARACTER CHECK, TRANS

* .. Local Arrays ..
real A(LA), X(NMAX), Y(NMAX)
INTEGER ICOL(LA), IROW(LA)

* .. External Subroutines ..
EXTERNAL F11XAF

* .. Executable Statements ..
WRITE (NOUT,*) ’F11XAF Example Program Results’

* Skip heading in data file
READ (NIN,*)

*
* Read order of matrix and number of non-zero entries
*

READ (NIN,*) N
IF (N.LE.NMAX) THEN

READ (NIN,*) NNZ
*
* Read the matrix A

[NP3390/19/pdf] F11XAF.3



F11XAF F11 – Sparse Linear Algebra

*
DO 20 I = 1, NNZ

READ (NIN,*) A(I), IROW(I), ICOL(I)
20 CONTINUE

*
* Read the vector x
*

READ (NIN,*) (X(I),I=1,N)
*
* Calculate matrix-vector product
*

TRANS = ’Not transposed’
CHECK = ’C’
IFAIL = 0
CALL F11XAF(TRANS,N,NNZ,A,IROW,ICOL,CHECK,X,Y,IFAIL)

*
* Output results
*

WRITE (NOUT,*)
WRITE (NOUT,*) ’ Matrix-vector product’
DO 40 I = 1, N

WRITE (NOUT,’(e16.4)’) Y(I)
40 CONTINUE

*
* Calculate transposed matrix-vector product
*

TRANS = ’Transposed’
CHECK = ’N’
IFAIL = 0
CALL F11XAF(TRANS,N,NNZ,A,IROW,ICOL,CHECK,X,Y,IFAIL)

*
* Output results
*

WRITE (NOUT,*)
WRITE (NOUT,*) ’ Transposed matrix-vector product’
DO 60 I = 1, N

WRITE (NOUT,’(e16.4)’) Y(I)
60 CONTINUE

*
END IF
STOP
END

9.2 Program Data

F11XAF Example Program Data
5 N

11 NNZ
2. 1 1
1. 1 2
1. 2 3

-1. 2 4
4. 3 1
1. 3 3
1. 3 5
1. 4 4
2. 4 5

-2. 5 2

F11XAF.4 [NP3390/19/pdf]



F11 – Sparse Linear Algebra F11XAF

3. 5 5 A(I), IROW(I), ICOL(I), I=1,...,NNZ
0.70 0.16 0.52
0.77 0.28 X(I), I=1,...,N

9.3 Program Results

F11XAF Example Program Results

Matrix-vector product
0.1560E+01

-0.2500E+00
0.3600E+01
0.1330E+01
0.5200E+00

Transposed matrix-vector product
0.3480E+01
0.1400E+00
0.6800E+00
0.6100E+00
0.2900E+01

[NP3390/19/pdf] F11XAF.5 (last)


