G01ASF - NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G01ASF produces a specified number of box and whisker plots on a character printing device, with a chosen number of character positions in each direction.

2 Specification

```
SUBROUTINE GO1ASF(PRT, M, N, X, LDX, NSTEPX, NSTEPY, PLOT, LDP,

WORK, LWORK, IFAIL)

INTEGER M, N(M), LDX, NSTEPX, NSTEPY, LDP, LWORK(LDX),

IFAIL

real X(LDX,M), WORK(5*M)

CHARACTER*1 PRT

CHARACTER*(*) PLOT(LDP, NSTEPX)
```

3 Description

G01ASF produces a series of box and whisker plots representing m data batches each of size n_i , for $i=1,2,\ldots,m$. A box and whisker plot is a diagrammatic representation of the five-point summary of a data batch. The plot consists of a box spanning the hinges with the median indicated by a third line and two whiskers to represent the extreme values. The five-point summary is calculated internally and is returned in the workspace array.

The plot is returned in the character array PLOT. The size of the plot may be controlled using the parameters NSTEPX and NSTEPY. Optionally the plot can be output to an external file, in which case output is directed to the current advisory message unit as defined by X04ABF.

An axis corresponding to the y axis is drawn and annotated and data points are plotted to the nearest character position.

4 References

- [1] Tukey J W (1977) Exploratory Data Analysis Addison-Wesley
- [2] Erickson B H and Nosanchuk T A (1985) Understanding Data Open University Press, Milton Keynes

5 Parameters

1: PRT — CHARACTER*1

Input

On entry: indicates whether the box and whisker plot is to be output to an external file.

If PRT = 'N', then the box and whisker plot is not output to an external file.

If PRT = 'P', then the box and whisker plot is output to the current advisory message unit as defined by X04ABF.

Constraint: PRT = P' or N'.

2: M — INTEGER

On entry: the number of data batches that are to be represented, m.

Constraint: M > 0.

[NP3390/19/pdf] G01ASF.1

3: N(M) — INTEGER array

Input

On entry: N(i) contains the number of observations in the ith batch, n_i , for i = 1, 2, ..., m.

If $n_i < 5$ the *i*th batch is omitted from the plot.

Constraint: at least one N(i), for i = 1, 2, must be greater than or equal to 5.

4: X(LDX,M) - real array

Output

On entry: the *i*th column of X must contain the data for the *i*th batch, that is X(j,i) must contain the *j*th observation of the *i*th batch, for $j = 1, 2, ..., n_i$; i = 1, 2, ..., m.

5: LDX — INTEGER

Input

On entry: the first dimension of the array X as declared in the (sub)program from which G01ASF is called.

Constraint: LDX $\geq \max(N(i))$.

6: NSTEPX — INTEGER

Input

On entry: the number of character positions to be plotted in the x-direction.

Constraint: NSTEPX $\geq \max(19, (15 \times M/4 + 9))$.

7: NSTEPY — INTEGER

Input

On entry: the number of character positions to be plotted in the y-direction.

Constraint: $NSTEPY \geq 9$.

8: PLOT(LDP, NSTEPX) — CHARACTER*1 array

Output

On exit: PLOT contains the box and whisker plots.

9: LDP — INTEGER

Input

On entry: the first dimension of the array PLOT as declared in the (sub)program from which G01ASF is called.

Constraint: LDP \geq NSTEPY.

10: WORK(5*M) — real array

Output

On exit: WORK(j), for $j = (i-1) \times 5 + 1$, $(i-1) \times 5 + 2$, ..., $(i-1) \times 5 + 5$, contains the five-point summary of the ith batch.

11: LWORK(LDX) — INTEGER array

Workspace

12: IFAIL — INTEGER

Input/Output

On entry: IFAIL must be set to 0, -1 or 1. For users not familiar with this parameter (described in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, N(i) < 5 for some i, for i = 1, 2, ..., m. For each batch where this occurs, 5 crosses are plotted in a vertical line to indicate that insufficient data was provided to produce a five-point summary and box-plot for that particular batch.

G01ASF.2 [NP3390/19/pdf]

```
IFAIL = 2
```

On entry, NSTEPX $< \max(19, 15 \times M/4 + 9)$. This indicates that the data region defined by NSTEPX is too small to produce the required plot.

```
IFAIL = 3
```

On entry, NSTEPY < 9.

IFAIL = 4

On entry, LDP < NSTEPY.

IFAIL = 5

On entry, $PRT \neq P'$ or 'N'.

IFAIL = 6

On entry, LDX $< \max(N(i))$, for i = 1, 2, ..., m.

IFAIL = 7

The number of observations in all batches is less than 5.

IFAIL = 8

On entry, the data values are all identical.

7 Accuracy

If the range of observations in a particular batch is too small to allow each item of the five-point summary to be plotted separately, then a sequence of stars are plotted at the median point of the batch to indicate that the full box-plot could not be plotted.

8 Further Comments

The time taken by the routine increases with m and n_i , for i = 1, 2, ..., m.

9 Example

The following program produces a box and whisker plot for each one of 5 data batches of sizes 5, 6, 8, 8 and 7 respectively and prints the 5 box and whisker plots on the current advisory message unit.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.

```
GO1ASF Example Program Text
Mark 14 Release. NAG Copyright 1989.
.. Parameters ..
INTEGER
                 NIN, NOUT
PARAMETER
                  (NIN=5, NOUT=6)
                 NMAX, LDX
INTEGER
PARAMETER
                  (NMAX=5,LDX=10)
.. Local Scalars ..
INTEGER
                 I, IFAIL, J, LDP, M, NSTEPX, NSTEPY
.. Local Arrays ..
real
                 WORK (5*NMAX), X (LDX, NMAX)
INTEGER
                 IWORK(LDX), N(NMAX)
CHARACTER
                 PLOT(60,132)
```

[NP3390/19/pdf] G01ASF.3

```
.. External Subroutines ..
  EXTERNAL
                    GO1ASF, XO4ABF
  .. Executable Statements ..
  WRITE (NOUT,*) 'GO1ASF Example Program Results'
  Skip heading in data file
  READ (NIN,*)
  Set advisory message unit for plot output to NOUT
  CALL XO4ABF(1,NOUT)
  READ (NIN, *) M, (N(I), I=1, M)
  READ (NIN,*) NSTEPX, NSTEPY
  DO 20 J = 1, M
      READ (NIN,*) (X(I,J),I=1,N(J))
20 CONTINUE
  LDP = NSTEPY
  IFAIL = 0
  WRITE (NOUT,*)
  CALL GO1ASF('Print', M, N, X, LDX, NSTEPX, NSTEPY, PLOT, LDP, WORK, IWORK,
               IFAIL)
  STOP
  END
```

9.2 Program Data

G01ASF.4 [NP3390/19/pdf]

9.3 Program Results

GO1ASF Example Program Results

0.1E+02+				
:	:	:	:	
:	:	:		
0.8E+01+	:	:	: :	
:	:		: :	
:	:	: :	::	:
:	:	: :	: :	
0.4E+01+	:	: :	: :	: :
:	:	: :		: :
:	:	: :	:	: :
:	:	::	:	::
:	:	: :	:	: :
-0.6E+00+	:	: :	:	: :
: :	:	: :	:	: :
:		: :	:	
::::	: :	: :	:	:
-0.5E+01+ ::	::		:	
::::	: :	:	:	
:		:	:	
: :	:	:	:	
-0.9E+01+				

 $[NP3390/19/pdf] \hspace{3cm} G01ASF.5 \hspace{0.1cm} (last)$