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Abstract
In an hybrid correlator, the signal to be analyzed is divided into several sub-bands, that are sepa-

rately analyzed. Edge effects are thus particularly important, as they determine the accuracy of the

reconstructed spectrum across junction points.

In this report these effects are analyzed. It is shown that, using a real valued correlator, errors of

up to 30% in amplitude, and 20 degrees in phase, could be expected. After appropriate calibration

for correlator response, these errors can be reduced by a factor of 3-4, but not eliminated. Accurate

spectra, to a level of a fraction of a percent or a few tenths of a degree, can be obtained only using

overlapping sub-bands, and discarding the more troublesome edge channels.

The effects of the digital filter shape is also analyzed. It is shown that filter ripple translates in a

calibration error that depends on signal gradient. This must be corrected for high dynamic range

observations.



1 Introduction

A hybrid correlator divides the bandwidth to be analyzed into several sub-bands (disjointed [3] or over-
lapping [1]), each of them analyzed in a time-domain correlator.

Any correlator with real lags suffers from phase and amplitude errors near band edges, due to the
finite transition region of the antialiasing filter and to the hermitian properties of the computed spectrum.
For this reason, usually edge channels are discarded. In a hybrid correlator, especially if the sub-bands do
not overlap, these errors are particularly important, because the ”edge” regions are distributed over the
whole bandwidth of interest. This report briefly analyzes these effects, together with possible mitigation
techniques.

The report deals only with theoretical, infinite accuracy, effects. Effects due to coefficient truncation
or filter implementation are not considered. In this way, these considerations are very general, end do
not depend on particular implementation (e.g. using polyphase, single stage or double stage FIRs, etc.).
For the simulations, however, realistic filter responses have been taken from proposed designs. Two
example cases are considered in detail, both composed of 32 sub-bands with 64 spectral channels each,
the first with non overlapping sub-bands, and the second with an overlap of 4 channels between adjacent
sub-bands.

Hybrid systems using complex correlators, like those using the WIDAR concept, suffer from these
problems to a much lessere extent.

2 Signal processing

Signal processing for a hybrid correlator can be decomposed into four steps

1. Filtering: the signal is passed through a filter that determines the sub-band shape.

2. Resampling: this process downconverts the sub-band, and introduces aliasing from the adjacent
sub-bands.

3. Correlation and tapering: the finite length of the correlator imposes a finite resolution bandwidth
for each channel. The actual channel spectral response can be modified using appropriate tapering
on the correlation function before Fourier transform.

4. Fourier transform: the cross spectrum is computed in a uniformly spaced set of points.

Apart from resampling, these operations can be performed in different ways, affecting the overall
performance of the instrument. For example, the actual shape of the passband filter (flatness, slope in
the guard region, allowed aliasing) has obvious effects on many performance parameters. In this chapter,
we will describe the main assumptions adopted for the example cases shown.

2.1 Fourier transform

Usually Fourier transform is computed on a set of N + 1 frequency points given by the formula

νj =
j

2N∆τ
(1)

where N is the number of (positive) correlation lags and ∆τ is the correlator delay step. j is an
integer running from 0 to N . Each spectral point can be considered as an estimate of the (complex)
spectral energy in a frequency bin (channel) of width ∆ν = 1/2N∆τ , centered on νj , except for channels
0 and N , that have width 1/4N∆τ and are real.

For an hybrid correlator, it is more convenient to compute the spectrum in the frequency points

νj = (j + 1/2)∆ν, j = 0 . . . (N − 1) (2)

In this way, the input band is divided into N equal channels, and all spectral points are complex (fig. 1).
Computationally, the simplest way to obtain this shift in the frequency channels is by multiplying the
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Figure 1: Spectral bins for a spectrum computed (a) using conventional FFT and (b) modified FFT.
Nominal channel frequencies are indicated by arrows. With conventional FFT, channels 0 and N have
halved width, and no imaginary component.

cross-correlation function C(τ) before Fourier transform by an exponential:

S(νj) = F

[

C(τk) exp

(

2πi
k

4N

)]

(3)

where F [C] denotes the Fourier transform, and the index k assumes the values [−N . . . (N − 1)]. An
efficient algorithm to perform modified FFT on real data is described in appendix A.

When using overlapping sub-bands, one must discard some channels at each sub-band edge. Choice
of the FFT algorithm depends thus on the number of overlapping channels, no. Having to discard no/2
channels from each edge, the original FFT is appropriate if no is odd (e.g with no = 1, channels 0 and N
are discarded), while the modified FFT is appropriate for no even.

In the subsequent analysis, we will consider both channels centered at half-integer [0.5, 1.5, . . . (N −
1/2)] and at integer [0, 1, . . .N − 1] values. In the simulations, however, spectra will be computed on
half-integer values only, as the example cases have no = 0, and no = 4.

2.2 Tapering

The finite length of the correlation function produces a smearing of the spectrum. The problem is well
known and extensively treated in the literature, but have some peculiar implications to the design of an
hybrid correlator.

The finite correlation function can be considered as the product of the ideal infinite correlation by a
finite tapering function. The resulting spectrum is convolved by the Fourier transform of the tapering
function. To decrease sidelobe levels, smoother tapering functions are employed. It is important to note
that, since tapering is applied to correlation products, the power response due to tapering is given by the
amplitude of the Fourier transform, and not by its squared value.

In this report, the Hanning tapering function 1/2(1 + cos(πτ/(N∆τ))) will be assumed, for its good
sidelobe rejection properties. The spectral response for the first channel (modified FFT, centered on
channel 0.5, nominal response from frequency 0 to 1), using this and other commonly used tapering
functions, is shown in fig. 2. Even for Hanning tapering, reponse is higher than -20 dB in a region of ±3
channels wide.

In principle, it is possible to choose tapering in order to obtain an ideal rectangular channel response.
For a XF correlator, however, this requires an extremely long correlation function, or conversely a severely
reduced spectral resolution. On the contrary, this approach has been successfully adopted in some FX
correlators, using a polyphase network before the FFT processor.

2.3 Filter transition region

Each sub-band has a shape determined by a filter characterized by a finite transition region. This causes
a finite leakage from the adjacent sub-bands, and alters both the amplitude and the phase responses of
the edge channels.

To avoid aliasing from adjacent sub-bands, the filter transition region should be as narrow as techni-
cally feasible. However, if the transition region is narrower than the channel broadening due to tapering,
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Figure 2: Spectral response for a single correlation channel (centered on position 0.5, nominal width
0 to 1) using different standard tapering functions: rectangular (continuous line), Welch (dotted) and
Hanning (dashed). Horizontal scale is expressed in channels.

as it will be shown in chapter 3.1, the correlator performance is not improved. Moreover, the filter will
introduce an asymmetry in the spectral response of the edge channels, shifting their effective position.

In this report the filter sharpness has been chosen in such a way to obtain a rejection in the aliased
bands comparable to that due to tapering, with 64 channels/sub-band. The prototype low pass filter
has 3072 taps, passband region from 0 to 0.007614746νs, stopband starting at 0.0082375νs. For 64
channels/sub-band, this corresponds to a passband of ±31.2 channels, and a stopband starting 1.74
channels after the sub-band edge. The filter has passband ripple of ±0.14dB and a stopband rejection of
43 dB. At the band edge, the attenuation is -3 dB.

The passband is moved to one of the 32 sub-band positions using a polyphase network or digital
receiver techniques.

For overlapping spectra, a different filter has been adopted, with the transition region extending over
the discarded channels and their aliased image. The filter response has a passband ripple of 0.1 dB and
a stopband rejection of 50 dB.

3 Edge effects

In this chapter we will use the following notation. The frequency ν is measured from the lower sub-
band edge, and expressed in spectral channels. The function t(τ) represents the tapering used for the
correlation function before Fourier transform, and T (ν) denotes its Fourier transform, i.e. the channel
spectral response due to tapering alone. It is important to note that T (ν) can be (and usually is) both
positive and negative. The nominal (central) frequency for spectral channel j is νj .

The bandpass filter response is denoted with F (ν). It is given by F (ν) = f1(ν)f
∗

2 (ν), where f1
and f2 are the (usually complex) amplitude responses of the filters in the two antennas, including all
contributions due to receiver, IF and sampler. If f1 = f2, then F (ν) = |f1(ν)|2 ≥ 0 and real. For
simplicity, and considering that we are interested in variations of F (ν) over few spectral channels that
usually depend only in the deterministic digital filter, in this report we consider this assumption to be
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satisfied.
The observed cross spectrum R′

j evaluated at the frequency νj is related to the actual spectrum R(ν)
by the formula:

R′

j =

∫

(F (ν)R(ν)T (ν − νj) + F ∗(ν)R∗(ν)T (ν + νj)) dν (4)

The filter response F (ν) includes contributions from both the analog and digital filters in the system.
If the filters in the two branches of the interferometer match, as noted in the previous chapter, the
function F (ν) is real. We have assumed this in the following chapters, for simplicity.

There is also a term due to the aliased sub-band at higher frequency, but in practical cases this does
not affect channels before the mid-band, and one can consider just the nearest sub-band. We have thus
computed the response for the first half channels (j = 0 . . .N/2), and assumed that the other half have
symmetric response.

This is similar to a convolution operation,

R′

j =

∫

R(ν)Pj(ν)

but the convolving function Pj(ν) is different for each channel j and for the real and imaginary part of
R(ν). It is given by:

Pj(ν) = F (ν) (T (ν − νj) ± T (ν + νj)) (5)

The sign between the two terms indicate that these terms add for the real part of the signal, and
subtract for the imaginary part. Due to the negative sign, the imaginary part of Pj(ν) goes to zero at the
sub-band edges. Since the real and imaginary responses are different, the phase of the measured cross
spectrum is affected.

From this equation we can see that errors can arise because of two independent factors, i.e. a nonideal
shape for both T and F . We can consider the two ideal cases where one of them correspond to an ideal
response to discrimnate these effects. If T (ν) is rectangular and 1-channel wide, the response for the first
channels is composed of the expected response centered on frequency νj , plus a ghost channel centered on
frequency −νj , attenuated bu the antialiasing filter, and with complemented phase. This corresponds to
a spectral brooadening. Phase errors depend on the spectral intensity in these two channels, and on the
filter attenuation at the ghost frequency. For ideal antialiasing filter, the response is given by T (ν − νj),
but its portion extending to negative frequencies is folded back with complemented phase. Therefore
we have no contamination due to undesired frequencies or spectral broadening, but a phase error that
increases for frequencies close to the band edge.

In fig. 3 (left) Pj(ν) for the first channels of each sub-band is plotted. The filter adopted is that
described in chapter 2.3, with Hanning tapering of the cross-correlation. The imaginary part is plotted
in red, where it is significantly different from its real counterpart. Channels are computed around half
integer values (νj gioven by eq. 2, using the modified FFT described in section 2.1. On the right plot,
Pj is shown for channels computed around integer values (conventional FFT, eq. 1). For channel 0 the
imaginary response is null, and the real response is strongly distorted.

The convolution operation produces several effects. In particular, the following quantities are affected:

• Overall channel response, defined by aj =
∫

Pj(ν)dν. This effect can be easily corrected by dividing
each point of the observed spectrum R′

j by aj .

• Channel center offset, defined as mj =
∫

Pj(ν)(ν−νj)dν/aj . In the presence of a spectral gradient,
this produces an uncalibrated error. In principle this also can be corrected, but the correction is
data dependent.

• The channel width, and thus the effective spectral resolution, σ2
j =

∫

Pj(ν)(ν − νj)
2dν/aj .

It is convenient to normalize both aj and σj with the corresponding values for the tapering adopted
(without edge or filter effects). For Hanning tapering, a = 2 and σ =

√
2. Values reported and plotted
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Figure 3: Spectral response for the first channels of each sub-band. Channels computed on semi-integer
(modified FFT, left) and integer values (conventional FFT, right). Real response in blue, imaginary
response in red.

below are such normalized, and thus their nominal value is 1. mj is already normalized, and its nominal
value is 0 (no channel shift).

These effects are plotted in fig. 4, for channels centered both on integer and on semi-integer values.
Amplitude response and width are normalized with respect to their nominal values, and offset is expressed
in channels. These quantities are worse for channel 0 (DC component, first one in a conventional FFT).
Since the imaginary part is lost, no correction would be possible, and no phase informations would be
available. The first channel for the modified FFT has also strongly reduced imaginary part (by a factor
2.5), while its center is displaced by 0.7 channels. Both effects are due to the non negligible contribution
from the aliased image of T (ν).

3.1 Dependence on filter sharpness

The effects described above depend on the filter sharpness, but only if the filter transition region is large
than the broadening due to tapering alone. The filter used to compute the responses in fig. 3 has been
chosen using this criterion. We then tested this criterion by doubling filter sharpness. Results are shown
on fig. 4 (right), and show a very little improvment in parameters. Increasing filter sharpness does not
provide any real advantages, but does not cause ill effects, apart from a small degradation in mj due to
the induced asymmetry in channel response.

If the filter sharpness is not adjusted when the resolution is changed, performance is much degraded.
If the number of channels per sub-band is increased from 64 to 128 or 256 (e.g. using less sub-bands or
polarization channels), the performances are those reported in fig. 5. In the first case, channel 0.5 has
very poor performances, but channel 1.5 is still marginally acceptable. In the second case, all channels
up to 3.5 are seriously affected.

For overlapping sub-bands, this means that a constant fraction of the band must be discarded. This
corresponds to 1, 2 or 4 channels (that is a constant 1/64 of the band on both sides) in the examples
shown here, i.e to a constant overlap in terms of frequency.
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Figure 4: From top: Integral response, center offset and width (normalized) for the first channels in each
sub-band. Quantities for the real and imaginary part is represented by red crosses and blue circles, resp.
Left plot is for nominal filter sharpness (3 Ktaps), right for doubled sharpness (6 Ktaps).
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Figure 5: From top: Integral response, center offset and width for the first channels in each sub-band, as
for fig. 4. Left plot for x2 resolution (128 channels/sub-band) right plot for x4 resolution.
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These effects produce strong phase errors in the edge channels. Different real and imaginary responses
cause errors in the meausred phase ψm that depend on the absolute phase ψ. For extreme cases where the
imaginary part is almost completely suppressed, the total error can be up to 90 degrees. If the imaginary
part is multiplied by a factor k < 1 with respect to the real part, the phase error ǫ as a function of the
original phase ψ is

ǫ = ψm − ψ = tan−1

(

− sin(2ψ)
1+k
1−k + cos(2ψ)

)

(6)

For k = 0.4 (channel 0.5 in the example of fig. 4), the maximum phase error is 26 degrees.
Most of this error can be corrected by multiplying the raw spectrum by a static calibration coefficient.

There are however several practical problems.
In the presence of strong signal attenuation, the corresponding noise is amplified during the correction.

The signal to noise degradation is of the order of (1 + k)/k.
More important, if there is a gradient in the spectrum, even if the phase is constant, the first mo-

mentum of the channel responses causes a gradient dependent error that is different for the real and
imaginary part.

3.2 Data correction

If near the nominal frequency νj the cross spectrum can be expressed as a power series R(ν − nuj) =
∑

rij(ν − νj)
i, the observed quantity R′

j can be computed using the quantities aj ,mj , σj defined above.
It is:

R′

j = aj(r0j + r1jmj + r2jσ
2
j ) + . . . (7)

It is possible to correct R′ trying to invert the above relation. The observed spectrum is first divided
by aj , and the resulting function is differentiated to estimate r1j , that is used to correct for the term
in mj . The process can be iterated to obtain a better estimate of r1j and of the following terms in the
expansion.

The process may however introduce extra noise, as the noise itself enters in the correction. The extra
noise added is proportional to the corrective terms, i.e. is small for mj but of the order unity for σj .
Extracting the second derivative is also more prone to errors, especially in the more important edge
channels. Preliminary simulations show that this is the case: correcting for r2j do not improve the errors.
Therefore we used only the first two terms in the following simulations.

4 Simulation results

To analyze these effects in a realistic case, some tests have been performed on a simulated signal. This is
composed of a correlated part, with predefined amplitude and phase, and of uncorrelated noise. Correlated
part includes both a continuum ad several spectral lines, with different phases. Simulation length is
64 Msamples, or 16 ms at 4 GHz. Signal amplitude and phase for the correlated part is shown in fig. 6.
The signal shape has been chosen in order to be always well resolved, with strong spectral features, and
with a strong amplitude and phase gradient on the boundary between sub-bands 8 and 9. Since this is a
particularly critical point, tests have focused on this region.

The hybrid correlator is configured as 32 sub-bands (non overlapping or overlapping), with 64 channels
each. The signal is analyzed by a simulated cross correlator (non hybrid) with the same resolution of
the baseline enhanced correlator (2048 points across the whole band, or 64 points/sub-band), in order to
provide a refence to which the hybrid spectrum can be compared.

No attempts have been made to analyze different configurations, e.g. increased resolution or reduced
sub-bands, as the scope of these simulations is to provide a test for the procedures described in the
previous chapter.
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Figure 6: Simulation signal spectrum. The signal is composed of a correlated noise, with the cross
spectrum shown here, and a uncorrelated noise, with flat spectrum. The horizontal scale is indicated in
sub-bands (the original spectrum is divided in 32 sub-bands in the hybrid correlator)

4.1 Non overlapping sub-bands

The test signal is analyzed by an hybrid correlator, in which each sub-band has a filter response given by
the prototype filter described in 2.3, and each sub-band is analyzed by a cross correlator with 64 spectral
channels.

In fig. 7 the resulting spectrum, with 64 spectral points per sub-band, is shown for the two relevant
bands. Two wide spectral lines are present, one split between the two sub-bands. The original (reference)
spectrum, analyzed using a conventional correlator, is shown in green. The spectral points computed by
the hybrid correlator are shown as crosses. A spectrum computed by a high resolution hybrid correlator
(512 points/sub-band) is shown in red. The horizontal scale is measured in units of one sub-band.

The junction region is particularly problematic. The signal has a small amplitude, and thus a high
sensitivity to small calibration errors, and very strong amplitude and phase gradients. As expected, the
hybrid phase goes to zero at each sub-band edge (red graph).

The response has been compared to that of the ”conventional” correlator. The large errors in the
imaginary response introduce a strong phase error, of more than 35 degrees, in the hybrid spectrum. This
is due in part to the amplitude unbalance, and in part to the center shift between real and imaginary
responses. Amplitude errors are also relevant, more than 30% (fig. 7 right). Amplitude errors due to
filter ripple are also visible.

Errors are strongly reduced by a calibration as described in 3.2. Static calibration for individual
channel response does not improve the situation very much. Amplitude errors are still around 30%, but
phase errors are reduced to 10-15 degrees in the junction region (fig. 8).

The situation is still improved after calibration for the offset in channel center (black points). Am-
plitude errors are around 15%, and phase errors around 5 degrees. Residuals are still large at the edge
channels, probably because accurate determination of signal gradient in this distorted region is problem-
atic.

In sub-band 9, where the signal is very weak, there is a noticeable contamination due to aliasing of
spectral features in the other sub-bands. This is consistent with the rejection of 42 dB in the passband
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Figure 7: Simulation results. (left) A simulated signal with the cross spectrum shown in green has been
analyzed with an hybrid correlator of 64 channels (black crosses) and 512 channels (red line). Amplitude
and phase responses are shown. (right) Amplitude (ratio) and phase (difference) errors.

filter. Not visible in the figure, a small ripple of the order of 0.2% is present in the amplitude residual.
This is consistent with the ripple in the filter stopband, folded over the 31 rejected sub-bands. This effect,
however, do not translate to a phase error.

4.2 Overlapping sub-bands

The same signal has been analyzed using a 2GC Fir Filter bank [3]. The filters have an effective passband
of 60/64 channels, an overlap of 4 channels, and two channels are discarded at each sub-band edge. The
two sub-bands have moved in order to have the stitching point coincident with the previous case. The
same filterbank has been tested also with an overlap of 2 channels (1 channel dropped at each edge).

The passband filter, implemented as a two-stage FIR, has 2048 equivalent taps, a stopband attenuation
of 50 dB, and a passband ripple of 0.1 dB.

In fig. 9 the associate errors are plotted. Left and right plots refer to 2 and 4 channels of overlap,
respectively (with different scale). Red points refer to correction for channel response only, black ones
include correction for channel center.

Discarding the more troublesome edge channels reduce by a very large factor amplitude and phase
errors. Although the filter was optimized for 4 channel overlap, even with 2 channel overlap (1 channel
discarded at each sub-band edge) amplitude errors are reduced to 4%, and phase errors to less than 2
degrees. With 2 channel overlap, amplitude and phase errors are resp. of 0.6% and 0.2 degrees.

In fig. 9right, the effect of the center shift is clearly visible in the red dots (that do not include the
associate correction). Due to filter ripple, in presence of strong gradients (on the sides of spectral lines),
a spurious ripple of the order of one percent is generated. The corresponding phase error is of a few tenth
of a degree. This effect, that is always present if digital filters are used, must be taken into account for
any high dynamic range observations of spectral features in crowded regions. The effect is particularly
important in digital filters due to the very high number of poles, that translate in a very fast ripple, of
the order of a few channels. A slope in the analog filter usually affects a large portion of the band, with
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Figure 8: Simulated results after correction. Left: Response across the boundary between two channels.
The original spectrum is in green, the (uncorrected) high resolution hybrid spectrum in red, the corrected
hybrid spectrum (64 ch./sub-band) is represented by the black crosses. Right: Amplitude ratio and phase
errors. Red dots represent data corrected for channels response only, while black dots include correction
for offset in channel center.

much slower gradients, and this effect is much less pronunced.

5 Conclusions

A real cross correlator has a spectral response with different real and imaginary parts near edge channels.
This gives rise to phase errors in these channels, with serious spectral degradation for an hybrid correlator.
The passband filter edge causes, moreover, a small shift in the center of the edge spectral channels,
producing further errors, both in amplitude and in phase.

These effects are not easily removed by calibration, and in the presence of steep spectral features
phase errors can be of the order of several degrees, while amplitude errors of 10% can be encountered.

These effects can be mitigated by overlapping the sub-bands by two or four channels at each edge,
and discarding one or two channels. With an overlap of 4 channels (effective bandwidth 94%), the phase
error is reduced to less than 0.5 degree, while a more conservative 2 channel overlap (useful bandwidth
97%) already reduces the errors by about a factor of 3.

Ripple in the passband filter causes small offsets in effective channel center, that translate in a ripple
both in amplitude and phase responses in presence of spectral gradients, with a period of few spectral
channels that may be confused with spectral features. This effect must be corrected to achieve high
dynamic range in crowded spectral regions.

The design of the passband filter is also important for preventing amplitude and phase errors. A
stopband rejection of 43 dB may cause errors up to 1 degree due to contamination from strong rejected
spectral features, and around 0.1% amplitude ripple due to stopband ripple. A rejection around 50 dB
seems sufficient to prevent any appreciable error.

For a system with non overlapping sub-bands, filter sharpness must be comparable to the slope of the
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Figure 9: Residual for overlapping sub-bands. Left: one channel (1/64) overlap, right: 2 channels overlap.
Errors as in fig. 8

channel response due to tapering of the cross correlation. For Hanning tapering, the total number of taps
required in the FIR filter is 1.5-2 times the total number of spectral channels in the whole band. Increasing
filter sharpness above this value does not improves performance, but edge effects are much degraded if
the filter sharpness is inadequate. This causes problems when correlator resolution is increased. For a
system with overlapping sub-band, the filter sharpness is related only to the amount of overlap, and thus
is independent from spectral resolution.
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A FFT routine for modified frequency sampling

Many routines have been proposed in the literature to efficiently Fouriertransform a real sequence. Given
a sequence g(τ), of length 2N , it is possible to obtain its spectrum in N + 1 frequency points νk =
k∆ν, k = 0 . . .N , using a discrete Fourier transform of length N . A similar approach can be used to
obtain the spectrum at the N points νk = (k + 1/2)∆ν, k = 0 . . . (N − 1).

We will follow the algorithm described in Numerical Recipes[4], with the appropriate modifications.
Let the real function to be transform be:

gk = g(k∆τ) k = −N . . . (N − 1)

In our specific case, gk is the cross correlation function, computed for negative and positive lags. Due
to the cyclic nature of the DFT, it is assumed that gN = g−N , that is not true. The effects of this

11



misassumption are not considered here.
We follow the convention of denoting the Fourier transform of a function with the corresponding

uppercase letter. In this appendix, however, we always use the modified Fourier transform computed on
the set of points νk as specified above.

We want to compute the function Gj :

Gj = G ((j + 1/2)∆ν) j = 0 . . . (N − 1)

We have ∆ν = 1/(2∆τ). The function Gj is hermitian, G−j−1 = G∗

j . Using the function expi(x) =
exp(2πix), we have

Gj =
N−1
∑

−N

gk expi

(

k(j + 1/2)

2N

)

=
N−1
∑

−N

[

gk expi

(

k

4N

)]

expi

(

jk

2N

)

(8)

Now let h2k = g2k + ig2k+1, that is, we pack two successive samples as the real and imaginary part of
a complex sample. In this way we obtain a complex sequence of length N (instead of 2N). Transforming
this sequence we obtain the function:

Hj =

N/2−1
∑

k=−N/2

f2k expi

(

k

2N

)

expi

(

jk

N

)

+i

N/2−1
∑

k=−N/2

f2k+1 expi

(

k

2N

)

expi

(

jk

N

)

= H1
j +H2

j

The first member is hermitian, since it is the Fourier transform of a real function, while the second is
anti-hermitian, due to the coefficent i:

H1
j = H∗1

N−j−1 H2
j = −H∗2

N−j−1

Using these properties, one can separate the two parts, and combine them to recover Gj :

Gj =
1

2

[

(

Hj +H∗

N−j−1

)

− i expi

(

2j + 1

4N

)

(

Hj −H∗

N−j−1

)

]

(9)

Using existing routines for DFT, the algorithm to be used to transform the real sequence gk of length
2N is therefore:

1. Group consecutive real samples as the real and imaginary part of complex samples, obtaining a
complex sequence hk of length N

2. Multiply the sequence hk by the complex factor expi(k/2N)

3. Apply a standard DFT algorithm, obtaining the function Hj

4. Use relation 9 to obtain Gj

A computer routine to implement this algorithm is listed below. It is heavily based on the correspond-
ing Numerical Recipes routine, and written in C++ (to use complex data type). The routine four1()

performs a complex FFT in place.

// Real input (two sided, size 2n),

// complex output (size n)

// Modified version, with N output points equally spaced

// across bandwidht. s1[i] represents frequency (2i+1)/2N
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// If sign==-1, s1 is input and s is output

void realft1(double s[], int n, complex s1[], int sign)

{

double theta=M_PI/(double)n, c1=0.5,c2;

complex h1,h2,w,wp;

const complex i(0.,1.);

int i1,i2,j,n2=n/2;

wp=exp(i*theta);

w=complex(1.0, 0.0);

if (sign == 1) {

c2 = -0.5;

for(j=i1=0; j<n2; ++j) {

s1[j]=complex(s[i1], s[i1+1])*w*0.5; // phase slope to shift

i1+=2; w+=w*wp; // 1/2 channel

}

w=-w;

for(j=n2; j<n; ++j) { // the same for neg. times

s1[j]=complex(s[i1], s[i1+1])*w*0.5;

i1+=2; w+=w*wp;

}

four1(s1,n,1);

} else {

c2=0.5;

theta = -theta;

wp=conj(wp);

}

w=exp(complex(0., 0.5*theta));

for (i1=0; i1<n/2; ++i1) {

i2=n-1-i1;

h1=c1*(s1[i1]+conj(s1[i2]));

h2=c2*i*w*(s1[i1]-conj(s1[i2]));

s1[i1]=h1+h2;

s1[i2]=conj(h1-h2);

w+=w*wp;

}

if (sign == -1) {

four1(s1,n,-1);

w=2.0;

for (j=i1=0; j<n2; ++j) { // Correct phase offset

s1[j] *= w;

s[i1++]=real(s1[j]); s[i1++]=imag(s1[j]);

w+=w*wp;

}

w=-w; // The same for neg. times

for (j=n2; j<n; ++j) {

s1[j] *= w;

s[i1++]=real(s1[j]); s[i1++]=imag(s1[j]);

w+=w*wp;

}

}

}
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