
SKA Project Series

 The FLDO Module for SKA-PSS

Firenze September 2014
C.Baffa, E.Giani

Arcetri Technical Report 3/2014

Abstract

One of the key scientific projects of the SKA radio telescope is a large survey for
pulsars both in isolated and binary systems. The data rate of the pulsar search engine is
expected to reach 0.6 TeraSamples/sec. For the purposes of extracting hidden pulses
from these streams, we need a complex search strategy which allows us to explore a
three dimensional parameter space and it requires approximately 10PetaFlops. This
problem is well suited for a parallel computing engine, but the dimensions of SKA bring
this problem to a new level of complexity.
Current design is based on a large number of GPUs. The PSS team is actively
developing a collection of modules which, acting as a pipeline, will perform this search
in real time. The Arcetri group is in charge of the FLDO module, and this report
documents the development and test of such module.

1 Introduction
The Square Kilometer Array is a giant radio telescope project, and it is the result of a worldwide effort
to develop a very large (both in area and extension) multi-wavelength instrument. One of the key
scientific projects of the SKA radio telescope is the large survey for pulsars, PSS.

The SKA Pulsar Search Survey, in the baseline design, will get 1750 simultaneous beams, digitized
every 50μs, on up to 4096 frequency channels, for a total of 0.5TeraSamples/sec. It is required a
complex search strategy to extract the hidden pulses from these streams. To correctly add up the
singles pulses, thus overcoming the overwhelming background noise, the pulsar processor needs to
explore a three dimensional space: the pulse period, the interstellar medium frequency dispersion and
the peculiar acceleration of the source.

In addition, all the calculation required needs to be performed in real time. Due to the large data flow
involved, it is impossible to retain more than a tiny fraction of the raw data. The SKA Pulsar Search
input is approximately 1PetaBytes on each cycle of observation which lasts up to 600s.

This optimization problem is well suited for a parallel computing engine, and there are already example
implementations for present-day radio telescopes. However, the dimension of the SKA project brings
this problem to a new level of complexity. The PSS is thus designed to be a real-time system, which
converts the enormous input data stream reduced to a just a few hundreds of megabytes of pulsar
candidates that are passed to the Science Data Processor (SDP).

The PSS team is actively developing a collection of modules which, acting as a pipeline, will perform
this search in real time. The Arcetri group is in charge of the last portion of this search, the folding (or
integrating module, FLDO) module, and we will documents the development and test of such module.

The folding engine would operate on multi-channel time-series raw data and integrate the signal (fold)
over time. To get meaningful results, this task needs to know the period, the DM and the acceleration.
The previous computing stage would present a set of candidates with tentative parameters.

After having folded raw data on the candidate characteristics the folding engine will then optimize in
period, period derivative and dispersion measure to produce the optimal signal parameters and signal-
to-noise ratio for each candidate, and send the result to the SDP.

This computing area is tricky to be performed with GPUs, as it has a lower I/O to computation ratio
than previous steps. The result is a lower gain transferring his algorithm from a multi-thread multi-core
CPU to a GPU, even in spite of the larger computing capability of the latter.

2 Summary of FLDO operations
The present day implementation consists of a four phases process, executed in sequence for each pulsar
candidate.

At first data is read from source (now a disk file, but can be a memory area or a network stream) and
split into a number of sub-integrations (default 64).

Data is then transposed and converted from 8-bit integers to 32 bit float numbers. If the candidate
period is longer than a specific value data is also pre-binned.

The pre-binning operation consists in summing up adjacent time samples. The number of time samples
to sum is a power of 2, so subsequent pre-binning can share some of previous computation.

The next phase is the real folding. For each sample is computed the phase relative to the candidate
period corrected for DM and acceleration. Each sample is then proportionally split between two
successive candidate phases. An array of weights takes care of the different measure numbers added to
each candidate phase. For each candidate the algorithm produces a matrix of profiles, one for each sub-
integration and group of frequencies (default 64x64).

Fourth phase is the fine tuning of candidates parameters, by means of a grid optimization search.

The optimization result is then forwarded to SDP for further processing.

For the pre-binning procedure, if each sample is not proportionally split, there can be an alternative
approach. In this case, each measure of original data is added to the nearest phase bin, de-facto
performing an a-posteriori pre-binning. This will result in a huge performance hit, as, in this case, re-
bin is performed for each candidate.

Final decision to be taken at the final down-select decision.

3 Phase 1 - Read and Split
The first phase of FLDO consists in getting data and splitting the input stream in a small number of
parts in order to perform a fine tuning in the fourth phase. Data input is assumed to consist of a
continuous stream of 8 bit numbers. Such values are the intensity of I Stokes parameter, and are
ordered first in frequency (fastest index) and then in time. The PSS observation default values are
assumed as 50µs of time resolution, 4096 frequency channels, 420s integration time. These values will
result in a 34GB data chunk. The origami implementation is able to process the maximum specified
data length of 1800s (145GB).

The origami implementation assumes data is stored in a local disk file, but it can easily modified to
accept data from a network stream or a memory buffer.

4 Phase 2 – Transpose, conversion and Pre-bin
Data is then transposed and converted from 8-bit integers to 32 bit float numbers.

The pre-binning procedure consists in summing up adjacent time samples. The number of time samples
to sum is a power of 2: for the moment the maximum value is 16 but in future we think to increase this
number.

The pre-binning helps us to reduce the size of data to be processed and also let us handle pulsar with
longer spin period.

The pulsar candidates input list is sorted by ascending periods. The candidates are divided in groups. In
the next table (where we assume the default sampling rate of 50μs) we devise two possible strategies.

The Fastest method strategy gives the fastest execution times, at the expense of final time resolution,
while the Conservative method gives the maximum resolution compatible with the hardware limits.
Maximum attainable S/N ratio seems to favor the conservative approach.

Candidate Period - Fastest method Candidate Period Conservative Re-bin Factor

 P < 0.0008 sec P < 0.0032 sec 1

0.0008 < P < 0.0016 sec 0.0032 < P < 0.0064 sec 2

0.0016 < P < 0.0032 sec 0.0064 < P < 0.0128 sec 4

0.0032 < P < 0.0064 sec 0.0128 < P < 0.0256 sec 8

0.0064 < P < 0.049 sec 0.0256 < P < 0.049 sec 16

The folding process gives a representation of the distribution of the data as function of the phase
relative to the pulse period. The folding generation is a operation where each sample votes in a reduced
set of phases (bins). The number of natural phases is calculated using the next formula (the factor 2
comes from the Nyquist rule):

nphases = 2 * P/tsampling

The current implementation in GPU of the FLDO module works with a maximum of 126 bins1: higher
values limit the GPU resources with an impact on the number of threads running in parallel. With this
limit on the number of the phases and a tsampling = 50 μsec, the FLDO module could only handle pulsars
with periods up to 3.2 ms if we do not implement re-bin.
The origami program uses a maximum re-binning factor of 16, so the FLDO can detect pulsars with
period up to 49 ms. Higher pre-binning values can be easily implemented. There is not an hard
maximum folding factor, we only put on our code a limit of a 16 re-bin folding, resulting in a
maximum candidate period of 51ms, only as a temporary provision, to limit the complexity of set-up
code during the developing phase. Adding higher pre-bin, we can ramp up to seconds without problems

5 Phase 3 – Coherent Folding

The folding algorithm consists in a synchronous summation of input data in order to improve the
Signal/Noise.

1 We use 126 and not 128 as a maximum to avoid the necessity to check for 'end of buffer' condition. This saves the use
of a costly modulo function. Phase bins 127 and 128 are respectively added to phase 0 and 1 at the end of computation.

Input data is processed in blocks of 64 sub-integrations. Each sub-integration is then divided in 64
bands of frequencies. These are the default values, but the folding program can change them through
the argument options (you can display them by the '-h' options)

The original data can be seen as a matrix of:

Quantity Value

nrow nchan

ncol nsampl

Where nsampl is equel to (tobs/t_sampling)/nsubint.
The execution of the corner-turning of each block of input data facilitates coalesced reads and it results
in (leads to) better execution performances. The data of each sub-integration is transposed before the
folding.

So the folding algorithm works on an array of data where:

Quantity Value

nrow nsampl

ncol nchan

For each block the folding produces two array on nphases elements: the first with the coherent sum of the
data (intensity profile) and the other with the weights of each phase (weights profile).
We devised two different coherent summing approaches. The first one, which we analysed more
thoroughly, will consist of a synchronous summation with phase split. This summation is illustrated in
Figure 1.
The second summation approach doesn't split input data, but it sums up each sample in the bin which
correspond to its central phase (Figure 2). This approach is 20-30% faster, but it implies a small
resolution loss.
At the end of the whole process we get 64 * 64 intensities profiles and 64 * 64 weights profiles.

Figure 1. Synchronous summation with phase split: input data is split according to its phase
relative to the pulsar candidate phase array. In the above figure, Data Sample portion A will be
summed up to Bin1, Data Sample portions B and C will be summed up to Bin2, Data Sample
portions D and E will be summed up to Bin3, and so on.

Phases array (16-126 bins)

Data Sample 3

Bin 1 Bin 2 Bin 3

Data Sample 1 Data Sample 2

Input Data
A

B
C

D E

Figure 2. Synchronous summation without phase split: input data is summed to the phase bin
corresponding to its central phase. In the above figure, Data Sample A will be summed up to
Bin1, Data Sample B will be summed up to Bin2, Data Sample C will be summed up to Bin3,
and so on.

6 Phase 4 – Normalization and Optimization
Last steps are the normalization and the optimization phases.

6.1 Normalization

Each intensity profile is divided for the corresponding weight profile, correcting for a non uniform
number of samples added to each phase bin. This portion has a negligible impact in the total execution
time.
Then the value of the mean of the current measure is computed2 and subtracted from the normalized
profile. Also this portion has a negligible impact in the total execution time (0.5 %).

6.2 Optimization

As last step the folding data are “Optimized”. This portion consists to calculate on the data the effect of
small perturbation of candidate parameter on the final signal to noise ratio. This optimization is
performed by a simple grid search, well suited for a parallel engine.
Some effort have been devoted to the possible use of an “amoeba style” optimization approach. But
we did not get good results, probably for the 'clumpiness' of the numerical function.

6.3 Reduction

The normalized profiles are summed up along frequencies and sub-integrations to produce the reduced
profiles, which are the result of our computation.

7 Performances
We have collected in a table the GPU execution times and the relative S/N, for 128 candidates with
different folding algorithms. Candidates periods are distributed uniformly up to 49ms. All
measurements are relative to a Nvidia K40 GPU.

2 We use a customized version of Cuda::Thrust library

Phases array (16-126 bins)

Data Sample 3

Bin 1 Bin 2 Bin 3

Data Sample 1 Data Sample 2

Input Data
A

B
C

Measure total time Split coherent folding
fastest (R1)

Split coherent folding
conservative (R2)

Non-Split folding
conservative (R2 N)

Gpu time S/N Gpu time S/N Gpu time S/N

60 11.3 64 19.3 115 14.0 116

120 19.1 99 34.8 164 24.4 164

240 35.0 137 65.9 228 45.7 235

420 59.9 187 113.4 307 80.5 306

600 90.0 --- 188.2 --- 164.5 ---

The 600s observation time line do not gives meaningful S/N as data are wrapped non coherently.

8 Conclusions
The performances shown in the previous chapter drive us to consider the non-split folding with
conservative pre-binning as the best compromise.

Some more work should still to be planned in the optimization part.

9 References

[1] Dewdney, P., “Ska1 system baseline design,” in [SKA1 Key documents], Diamond, P., ed., SKA-
TEL–SKO–DD–001, SKA Organization, Manchester, UK (2013).
https://www.skatelescope.org/home/technicaldatainfo/key-documents/.

[2] Keith, M., “Ska csp ska1-mid array non-imaging processing pulsar search sub-element architecture
design document,” in [SKA1 CSP Thecnical Documents], Carlson, B., ed., SKA–TEL.CSP.NIP.PSS–
TDT–ADD– 001, SKA Organization, Manchester, UK (2014).

[3] K., C., R., C., and et al., “Toward early-warning detection of gravitational waves from compact
binary coalescence,” APJ 748,2, id136–14 (2012).

[4] D., L. and M., K., [Handbook of Pulsar Astronomy], Cambridge University Press, Cambridge
(2005).

	Abstract
	1 Introduction
	2 Summary of FLDO operations
	3 Phase 1 - Read and Split
	4 Phase 2 – Transpose, conversion and Pre-bin
	5 Phase 3 – Coherent Folding
	6 Phase 4 – Normalization and Optimization
	6.1 Normalization
	6.2 Optimization
	6.3 Reduction

	7 Performances
	8 Conclusions
	9 References

