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Abstract

The SKA Pulsar Search requires a fast real time data processing in order to keep-up
to the SKA pulsar data production. Such pipeline (named CSP-NIP-PSS pipeline)
will be implemented as a collection of software modules running on PSS nodes or on
the softwaree accelerators (GPU or FPGA) attached to them.
The  FLDO is  a  software  module  within  the  CSP-NIP-PSS  pipeline.  The  FLDO
receives  the  SCL  and  FFB  and  produces  the  optimized  candidates  and  their
associated data. This component is responsible for producing the periodicity search
data products that form the output of the CSP-NIP-PSS sub-element. 
The present document presents two possible implementations on GPU and on FPGA
accelerators.



1 Overview
This section presents a general outline of the candidate folding and optimisation processing module 
(referred to as FLDO) with a brief description of its role in the PSS. FLDO is responsible for 
producing the periodicity search data products that form the output of the CSP-NIP-PSS sub-
element. FLDO is a software/firmware module. A functional description of FLDO is shown in
Figure 1.
Inputs to FLDO are:

 The candidate list (SCL) from SIFT, 
 The 4096-channel time series data (FFB) from the filter bank buffer creator (FFBC) 
 The meta-data from local monitor and control (LMC). 

FLDO performs binning, dedispersion around the values specified in each SCL, produces a profile 
set for each SCL, computes statistics for each profile and sorts them to select the best optimization 
parameters. Outputs from FLDO are optimized parameters with associated profile (OCLD), all S/N 
and the relative meta-data.

Figure 1: Functional description of FLDO



2 Input Parameters

Table 1: Input parameters used as reference during development

Number of samples 223

Total Bandwidth (MHz) ~320.0
Channel width (kHz) ~78.125
Sub-bands 64
Number of channels 4096
Sample interval (us) 64
Sub integrations 64
Observation time (s) 536

Bits per sample 8
Number of bytes (GiB) 32
Number of candidates 128 - 1000

Table 1 reports the data input parameters used during development. The code can cope with 
different values set inside the ranges allowed for real operations.
The details of the FPGA and GPU technology based prototype that we developed are presented 
here. 

3 FPGA 
An FLDO architecture design for FPGA technology has been designed and is based on an Arria-10 
FPGA PCIe accelerator. This work was done with an industry partner, namely Covnetics. Based on 
a technology study that was performed, the Arria-10 was found to be a state of the art FPGA that 
supports hardware based floating point signal processing, high-level design tool support based on 
OpenCL and is power efficient. Hence, the Arria-10 FPGA was used for this prototype work. 
The design developed gives early estimates on power and a feel for expected performance. 

3.1 FPGA Design Summary

The parameters used as a reference during the development are:
 observation time is ~536 seconds
 two beams are processed by one FLDO instance
 about 1000 candidates are distributed between every two beams
 about 1024 (by reducing the input from 4096) frequency channels are used for FLDO 
 typically 223 time samples are used at each channel
 time samples arrive at 64 us intervals and are 8-bits wide

The FLDO optimises the candidates across 256 DM steps X 256 Period steps X 256 Period 
Derivative steps [AD33]. The outputs will be folded profile cubes (FPC) with dimensions: 128 
phase-bins X 128 sub-bands X 64 sub-integrations. These parameters are programmable to a 
reasonable extent.

3.2 The Design

The FLDO consists of functions to perform sample integration, channel integration, dedispersion, 



folding, optimiser and SNR computation modules as shown in Figure 2.
During the design process, a detailed analysis was made of the algorithm and FPGA resources used 
by the sub modules and planned for vectorising the functions where suitable. For a few critical 
modules such as for dedispersion and optimisation, multiple processing architectures were derived, 
and the one that was best optimised between resource usage and performance was selected. Two 
major options were identified to fit the design into a target FPGA, viz. a) a monolithic design where
the entire FLDO fits into a single FPGA (in other words as a single image), and b) a two part design
(as two images partitioning the FLDO processing flow at the dashed line shown in Figure 3), where 
the entire pre-processing happening before the optimization stage (later referred to as the folding 
stage) forms one part of the design and the remaining part that includes the optimization and SNR 
calculation stages forms the second part of the design. The respective merits of the two options 
were analysed. The two-image based approach would be useful in a situation where the FLDO’s 
external DDR memory is not sufficient to store the entire FFB data for the full observation. 

Figure 2: Functional description of the FLDO that is considered in the prototype design
development 

Figure 3: FLDO processing Flow showing possible design partition after folding stage

The study began by identifying all major modules and functions that are required to be developed in



the FPGA for the FLDO. All variants within the Arria-10 FPGA family were considered, along with
their capabilities to accommodate the number of local buffers, signal processing blocks and 
portability with number of external DDR memory banks as needed in the design. As a part of this 
effort, a spreadsheet based FPGA resource and processing performance estimator (Figure 4) that 
works based on user-supplied parameters, was also developed. The internal, external memory 
capacity and external memory bandwidth required for the various processing options are also 
captured in this work. 
Naming tags were assigned for each of these modules to trace them during development and 
improve testing logistics. A detailed internal architecture for each module was designed. shows one 
example from the optimiser module. Detailed estimates were made of the FPGA resources required 
to implement all major modules in an Arria-10 FPGA. 
Detailed analysis was made of the timing to capture the data flow to FLDO from within the PSS. 
The timing diagrams shown in Figure 6 capture the PSS data flow up to FLDO. The control flow 
within the FLDO FPGA platform is captured as a swim-lane diagram shown in Figure 7.

Figure 4: FLDO processing metrics spreadsheet showing the relation between the processing
choices, memory-IO bandwidth, FPGA resources and Processing Time.



Figure 5: Optimisation Module - an example for the detailed design.



Figure 6: PSS Pipeline Timing Diagram for Data to FLDO. The timing diagram captures the
data flow within PSS before every new set of data that arrives at FLDO for processing.



Figure 7: FLDO operation swim-lane diagram. The sequence of control flow within FLDO
FPGA platform is captured in this diagram.

Based on the metrics developed from this work, the expected performance for the FLDO, resource 
utilisation and the power performance is presented here. For this analysis, it is assumed that the 
FLDO is implemented as a single image. For the power analysis, Altera’s early power estimator 
tools were used. Based on this study, early estimates were made for the power performance of the 
future Startix 10 FPGAs. 



4 GPU
The current approach to the software implementation on GPU of candidate folding is a C-CUDA 
module. A prototype, named Origami, has been developed and tested. The results are presented in 
Section 1.

4.1 GPU Implementation Summary
The present Origami implementation consists of a four-phase process, executed in sequence for 
each pulsar candidate.
First, data is read from source (can be a disk file, a memory area or a network stream) and split into 
a number of sub-integrations (default 64). 
Data is then transposed and converted from 8-bit unsigned integers to 32 bit float numbers. If the 
candidate period is longer than a specific value, data is also pre-binned. The pre-binning operation 
consists of summing adjacent time samples. The number of time samples to sum is always a power 
of 2, so subsequent pre-binning can benefit from the previous computation.
The next phase is folding. For each sample, the phase relative to the candidate period is computed 
and corrected for DM and acceleration. Each sample is placed in the appropriate phase bin or 
proportionally split between two successive phase bins. An array of weights takes care of the 
different numbers of samples added to each candidate phase bins. For each candidate, the algorithm 
produces a matrix of profiles (up to 128 bins long), one for each sub-integration and group of 
frequencies (default 64x64).
The fourth phase is the optimisation of candidate parameters, by means of a grid optimization 
search. The optimization result is then normalized and forwarded to SDP for further processing.

4.1.1Phase 1 - Read and Split  
The first phase of FLDO consists of getting data and splitting the input stream in a small number of 
parts (sub integration of parameter) in order to perform optimisation in the fourth phase. Data input 
are assumed to consist of a continuous stream of 8-bit numbers. Such values are the Stokes-I, and 
are ordered first in frequency (fastest index) and then in time. During development of the PSS 
observation, input values are assumed as 64 µs of time resolution, 4096 frequency channels, and 
536 s integration time. These values will result in a 34 GB data chunk. The code can cope with 
different value sets inside the ranges allowed for real operations. The Origami implementation is 
able to process the maximum specified data length of 1800 s (145 GB).

4.1.2Phase 2 – Transpose, conversion and Pre-binning

4.1.2.1 Transpose and conversion
In phase 2, data are transposed (corner turning) and converted from 8-bit unsigned integers to 32 bit
float numbers. The execution of the corner-turning of each block of input data facilitates coalesced 
reads for GPU and it results in better execution performance. 
Input data is processed in blocks of 64 sub-integrations. Each sub-integration is then divided in 64 
sub-bands. These are the default values, but the folding program can be modified using the 
argument options. 

4.1.2.2 Pre-Binning
The pre-binning procedure consists of summing adjacent time samples. The number of time 
samples to sum is a power of 2: in the prototype the maximum value is 16 but there is no hardwired 
limit. The pre-binning reduces the size of data to be processed and also makes it possible to process 



pulsars with longer spin periods.
The pulsar candidate input list is pre-sorted by ascending periods. The candidates are divided in to 
groups. In Table 2 assuming the default sampling rate of 64 μs, two possible strategies are shown. 
The Fastest method strategy gives the fastest execution times, at the expense of final time 
resolution, while the Conservative method gives the maximum resolution compatible with the 
hardware limits. Maximizing the S/N seems to favour the Conservative approach.

Table 2: Candidate Pre-binning Strategies

Candidate Period - Fastest Candidate Period - Conservative Re-bin Factor

P < 0.001 sec P < 0.004 sec 1

0.001 < P < 0.002 sec 0.004 < P < 0.008 sec 2

0.002 < P < 0.004 sec 0.008 < P < 0.016 sec 4

0.004 < P < 0.008 sec 0.016 < P < 0.032 sec 8

0.008 < P < 0.063 sec 0.032 < P < 0.063 sec 16

The current implementation of the Origami program uses a maximum re-binning factor of 16, so the
FLDO can detect pulsars with periods up to 63 ms. There is no hard maximum for the folding 
factor. The present limit is only as a temporary provision, to limit the complexity of the set-up code 
during the design phase. Adding higher pre-bin, pulsar periods can be ramped up to seconds without
problems. Also, due to the very small number of samples involved in this module, the execution 
time is insignificant and doesn’t affect the overall processing. 

4.1.3Phase 3 – Coherent Folding
The folding algorithm consists of a synchronous summation of input data in order to improve the 
S/N.
The folding process gives a representation of the distribution of the data as a function of the phase 
relative to the pulse period. Folding is an operation where each sample is attributed to a reduced set 
of phase bins. The natural number of phase bins is calculated using the formula (the factor 2 comes 
from the Nyquist rule):

nphases = 2 * P/tsampling

The current implementation in GPU of the FLDO module works with a maximum of 126 bins1: 
higher values limit the GPU resources with an impact on the number of threads running in parallel. 
With this limit on the number of the phases and a sampling time of tsampling = 64 μs, the FLDO 
module could only handle pulsars with periods up to 4.1 ms without re-binning.
For each block, folding produces two arrays of nphases elements: the first with the coherent sum of the
data (intensity profile) and the second with the weights of each phase (weights profile).
FLDO implements two different coherent summing approaches. The first one will consist of a 
synchronous summation with phase split, see Figure 8.
The second summation approach doesn't split input data, but each sample is summed in the bin 
which corresponds to its central phase (Figure 9). This approach is 20-30% faster, but sometimes it 
implies a small resolution loss. 
At the end, the whole process results in 64 x 64 intensity profiles and 64 x 64 weight profiles. 

1
We use 126 and not 128 as a maximum to avoid the necessity to check for 'end of buffer' condition. This saves the use 
of a costly modulo function. Phase bins 127 and 128 are respectively added to phase 0 and 1 at the end of computation.



Figure 8: Synchronous summation with phase split: input data is split according to its phase
relative to the pulsar candidate phase array. In the above figure, Data Sample portion A will

be summed up to Bin1, Data Sample portions B and C will be summed up to Bin2

Figure 9: Synchronous summation without phase split: input data is summed to the phase bin
corresponding to its central phase. In the above figure, Data Sample A will be summed up to
Bin1, Data Sample B will be summed up to Bin2, Data Sample C will be summed up to Bin3

4.1.4Phase 4 – Normalization and Optimization
The last steps are the normalization and the optimization phases.

4.1.4.1 Normalization
Each intensity profile is divided by the corresponding weight profile, correcting for the non-
constant number of samples added to each phase bin. This portion has a negligible impact on the 
total execution time. Then the value of the mean of the current measure is computed2 and subtracted
from the normalized profile. This portion also has a negligible impact on the total execution time 
(0.5 %).

2
We used a customized version of Cuda::Thrust library



4.1.4.2 Optimization
In the last step of FLDO, the candidate parameters are optimized. The optimization procedure 
computes the effects of small perturbations on candidate parameters on the final S/N. The procedure
selects the perturbed parameter set with higher S/N. This optimization is performed by a simple grid
search, well suited for a parallel engine. 
Some efforts have been devoted to the possible use of an “amoeba style” optimization approach. 
The results were not good, probably because of the 'clumpiness' of the numerical function.
The optimization phase, initially a small portion of FLDO total time, in the last iterations has 
assumed a larger and larger fraction of total time.

4.1.4.3 Reduction
The normalized profiles are summed along frequencies and sub-integrations to produce the reduced 
profiles, which are the result of FLDO computation for this prototype.  



5 Results
This section reports the current performance of FLDO prototypes. Also, some historical trends are 
presented.

5.1 FPGA Performance

The main results obtained from this design effort are:

1. An  FPGA based  design  for  the  FLDO:  This  is  an  implementable  detailed  design
documentation  and  guideline  derived  from  the  basic  FLDO  requirement  and  best
technology choices available at this time [AD33] 

2.
Result: The development and design are described in AD33.

3. FLDO processing metrics: This is a spreadsheet model of the FLDO FPGA architecture
that  calculates  processing  time  and  FPGA resource  utilisation  based  on  user  entered
FLDO input parameters and choices. [AD33: Appendix D]

Result:  The design is  split  into two logical  blocks,  namely folding and optimisation.
Based on the design that we made, we find  that an FPGA based folding process would
take  134.22  seconds  and  optimisation  would  take  456.80  seconds.  The  optimisation
process is expected to start once first few folded cubes are produced from the folding
process. Due to the expected overlapped operation between the two processes, the entire
FLDO consisting of folding and optimisation for 1000 candidates across two beams can
be completed in the real time of 536.7s that is considered for this design.  

4. Memory  size  and  bandwidth  requirement  metrics: We  have  developed  a  set  of
equations that calculate the external DDR storage space for input data, results, internal
buffer  size  for  any intermediate  results  and the  internal  memory bandwidths  that  are
required  to  meet  the  FLDO  specifications.  The  user  parameters  are  input  data  size,
number of buffering stages, memory bus clock speed, internal bus width and expected
bandwidth efficiency. Parameters such as bus width comes from the design choice, and
clock speed and bandwidth efficiency mainly come from the memory technology choice
[AD33: Appendix E]

Result:  Results  from  this  work,  especially  helped  us  to  understand  the  constraints
imposed on our design for the FPGA size and platform memory bank architecture, thus
allowed us to optimally arrive at an implementable design for the prototype purpose.  

5. Power estimation:  We  developed  spreadsheets  that  translate  design  information  into
power  estimates  for  a  given  FPGA part.  The  user  parameters  are:  a  detailed  FPGA
resource list that is usually auto generated from another spread-sheet (derived after a trial
synthesis using Quartus), clock speed, expected data toggling rates, ambient conditions,
cooling  choices  such  as  heat-sink  size  and  air-flow  capacity  and  FPGA part  details
[AD33: Appendix F]

Result:  For one set  of optimal  design parameters  that  we used, the estimated FLDO
FPGA nominal power consumption is about 26 Watts and a silicon-junction temperature
is  63.0 °C for an Arria-10 GX1150 hosting folding and optimisation processing on a
single FPGA image. The data toggle rate can affect the power consumption over a range



from about 15 W to 38 W as observed from the simulations. Besides this result, our study
also captures effects of changes to airflow and ambient temperature to power and silicon
junction temperature. We have also extended this work to study the anticipated power
performance for the future technology based FPGAs namely Startix 10 using the early
power estimate tools made available  to use through University of Manchester-Altera-
Covnetics  NDA arrangements.  The power performance obtained for Stratix 10 FPGA
appears  attractive  and  the  details  are  presented  in  the  Covnetics  document  [AD33:
Appendix F].  

6. Future upgrades and scalability:  The basic design can be extended to support more
candidates  or  to  process  additional  beams  when  higher  capability  FPGAs  and  high
bandwidth  and  capacity  memories  are  available  during  the  implementation  stage  in
future.

5.2 Conclusions from the FPGA prototyping work

The FLDO design was developed by working with industry partner Covnetics [AD33], and the 
design details are captured with high accuracy that can easily be translated for any implementation 
and validation purposes. Careful attention has been paid to the testing and verification procedures 
that will be required later in the project.  Over all, this effort towards prototyping of FLDO using 
FPGA technology resulted in a design that we think is readily realizable with high level of 
confidence.  



5.3 GPU performances
In Table 3the GPU execution n times and the relative S/N for FLDO are shown using different 
folding algorithms. Candidate periods are distributed uniformly up to 49 ms. The assumed folding 
approach is always conservative (see Table 3) on phase length choice (maximizing S/N). All values 
are relative to an Nvidia GTX1080 GPU. For these simulations 128 candidates, 128 phases, 64 sub 
integrations and 64 sub bands are assumed.

Table 3: GPU Execution Times

Number of measures
Number of channels

Split coherent folding conservative  Non-Split  coherent  folding
conservative 

Folding  time  &
Optimization

S/N Folding  time  &
Optimization

S/N

223 (536s)

4096
56s + 37s 337 47s + 37s 350

222 (268s)

4096
28s + 37s 213 23s + 37s 226

221(134s)

4096
14s + 37s 171 12s + 37s 174

223 (536s)

1024
18s + 37s 360 15s + 37s 350

222 (268s)

1024
9s + 37s 222 7s + 37s 231

221(134s)

1024
5s + 37s 179 4s + 37s 184

From all measured timings, some indications can be inferred. Most trends are linear, but there 
should be differentiation between 'linear increase' (something of the form y=ax+const) and 'linear 
proportionality' (something of the form y=ax). Moreover, due to the relative small number of trials 
compared to the total parameter space, second order effects cannot be ruled out while changing 
more than one parameter at time.
Main trends (derived from a larger set of computations):

1. Folding time is proportional to integration time, and increases linearly with the numbers of
candidates. 

2. Folding time is proportional to the number of frequency channels, while optimization time
has little or no dependence on it. 

3. Optimization times have no significant dependence on integration time, and are proportional
to the number of candidates.

4. Split phase is consistently faster by a factor of 20-25%, with no loss of S/N ratio.
5. Optimization time is proportional to the number of points explored. S/N seems to increase

with the decrease of the spacing of the points explored, but it becomes less likely to get to
the maximum.
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