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Abstract

An astronomic correlator analyses a signal that has a Gaussian bivariate statistics, quantized with a

limited number of bits. The correlator response to the quantized signal is linear only in a limited range of

the signal amplitude, but the relation between the quantized and unquantized correlation is well known, and

most present day correlators correct for this effects. In large interferometers, with hundreds of antennas and

thousands of spectral channels, it can be advantageous to limit the signal amplitude to the linear region, and

completely avoid the quantization correction. Nonlinearities have been computed for quantization schemes

from 4 to 9 bits. When 4 or 5 bits are used, keeping the signal in the linear region causes a degradation in

the quantization efficiency. Autocorrelation is always affected when using quantization with less than 8 bits,

and must be corrected. The effect of rounding in requantization is also considered.



1 Introduction

An astronomic correlator computes the correlation product < x1x2 > of two signals x1 and x2, e.g. from two
antennas in an interferometer, or from two different delay values in an autocorrelation spectrometer. These
signals are stochastic in nature, with a Gaussian bivariate distribution. Usually they have zero mean, and their
statistics is characterized by their variance σ2

1 , σ
2
2 and correlation ρ. The correlation product in this case is

r(ρ) =< x1x2 >= ρ σ1σ2.
Due to its stochastic nature, the astronomic signal can be quantized in a very crude way without losing

appreciable information and dynamic range. The relationship between the correlation products of the quantized
and unquantized signals has been extensively studied and, in the simple case in which the quantization occurs
just before the product, the original unquantized correlation product can be retrieved with very good accuracy
from the quantized one. The procedure is usually called Van Vleck correction, from the 1-bit case [10].

The situation is more complex when multiple quantizations occur at various stages of the signal processing
chain. For example in a FX (Fourier transform followed by multiplication) correlator the quantized signal is
Fourier transformed, and the result in each frequency channel is then re-quantized and correlated. When a
digital receiver is employed, the down-converted signal is also re-quantized. In general a modern digital signal
processing system may use three or more requantizations. It is possible to correct for the quantizations others
than the last, but the correction can be mathematically accurate only if the whole spectral content of the signal
to be corrected is known, that is not the case for example in digital receivers. Approximate correction techniques
have been used in this case, for example in the ALMA hybrid FXF correlator [1].

In large interferometers the sheer number of correlation products makes a correction problematic. In par-
ticular in the Square Kilometre Array (SKA) Low telescope 512 dual polarization antennas are cross correlated
in a FX correlator employing 16384 spectral channels. The total number of (real) correlation products is then
234 (16 million autocorrelations and ≃ 8 billion complex cross correlations), that should be corrected every few
seconds.

It would therefore be useful to avoid completely the quantization correction, if at all possible. This can be
done if a sufficient number of discrete levels are used in the quantization process, and in practice no corrections
are used for quantization with 8 or more bits, and even with just 5 or 6 bits. Where high dynamic range is
required, however, a quantization scheme of 8 or less bits may introduce significant nonlinearities, and these
depend heavily on the signal level. The away from zero rounding scheme, also frequently employed to avoid
rounding DC biases, may also introduce significant nonlinearities. In this work we will analyze these effects in
order to derive limits on the signal amplitude as a function of the quantization scheme and required nonlinearity
levels.

In some limiting cases it could be useful to use a simplified correction scheme, requiring less computing
resources. Some indications for such a scheme are also outlined.

2 Mathematical definitions

We will consider two stochastic signals, x1, x2, that are described by a joint bivariate normal probability function:

P (x1, x2, ρ) =
1

2πσ1σ2

√
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exp
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1

2(1− ρ2)

(
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)

)

z1 =
x1 − µ1

σ1
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σ2

(1)

where each of the two signals has a Gaussian distribution with mean µi and standard deviation σi.
The correlation coefficient ρ =< (x1 − µ1)(x2 − µ2) > /σ1σ2 ranges from −1 to +1. The correlator output,

without quantization, would be:
r =< x1x2 >= µ1µ2 + ρσ1σ2 (2)

In this report we will assume for simplicity that the two signals have zero mean, µ1 = µ2 = 0. This is usually
the case, as the DC component is removed before the quantization.

Quantization of the two signals x1,2 means replacing them with a value X1,2 in a limited set. The set is
represented by the n values, vi and the corresponding thresholds, li and l[i+1], with the index i ranging from 0

to n − 1. The number of levels n can be odd or even, usually of the form 2k − 1 or 2k. Here we will assume



that the input signal is expressed in units of the quantization step, and the quantized value is the center of each
quantization interval:

vi = −
n− 1

2
, . . . ,+

n− 1

2

li = vi −
1

2
, i = 1, . . . , n− 1

l0 = −∞ ln = +∞

(3)

A particular case occurs for rounding, in which the quantization intervals are not uniform. It will be discussed
separately in section 6.

The correlation of the quantized signals R is given by

R(ρ) =< X1X2 >=
∑

i

∑

j

vivj B(i, j; ρ)

B(i, j; ρ) =

∫ li+1

li

∫ lj+1

lj

P (x1, x2; ρ) dx1dx2

(4)

where the integral is the probability of having the two quantized samples in the respective quantization
intervals, and is expressed in terms of the bivariate normal cumulative distribution function.

In the typical radioastronomic case the amplitudes σ1, σ2 of the two signals do not vary significantly with
time, and can be independently measured, while the correlation varies significantly, e.g. due to interferometric
fringes. ρ is usually not large for cross correlation, or for autocorrelation with a nonzero delay, and is identically
1 for autocorrelation with zero delay. We will focus then on these two cases.

In a first approximation the correlation of the quantized signals R is close to the unquantized correlation r.
The quantization introduces the following effects:

• The amplitude of R is different from r, but for small ρ they are almost proportional. We can assume
R(ρ) = g r(ρ), where the gain g is close to (and usually slightly smaller than) unity when using the
quantization parameters of equations (3).

• For large ρ the above relation deviates from a purely linear one. We quantify this nonlinearity evaluating
the quantity R(ρ)− g · r(ρ), or determining the next element in a Taylor expansion in ρ, proportional to
ρ3.

• The signal-to-noise ratio is worse for the quantized correlation, mostly, but not only, because of added
quantization noise. The correlator efficiency is measured as the ratio of the signal-to-noise for the quantized
vs. non-quantized correlations and it has been computed for the general case by several authors (see for
example [9], or formula (11) here).

All these effects depend strongly on the signal amplitude. The gain and quantization efficiency do not
depend very much on the correlation coefficient ρ, and therefore we will assume their value for small ρ. The
nonlinear effect, being proportional to ρ3, is important for high values of ρ, usually at least ρ = 0.3. In section
4 we will derive quantitative formulas for these effects.

In principle it is possible to correct the quantized correlation both for the gain and the nonlinearities. The
two signal amplitudes σ1,2 are derived from the respective autocorrelation products < X1X1 > and < X2X2 >,
and the correction derived for example by interpolating pre-tabulated values of R(σ1, σ2, ρ).

This is done routinely for interferometers up to the size of ALMA, but the computation effort is very large,
and requires extensive bookkeeping of the signal amplitudes at all stages of the signal processing chain. As we
will see, g is relatively independent from signal amplitude in a wide set of conditions, and under these conditions
this correction can be completely avoided. In chapter 5 we will derive these conditions, under specifications on
gain stability and linearity derived from those of the Square Kilometre Array interferometer.

For ρ = 1 (autocorrelation) this is usually not true, and a correction of the autocorrelation products may be
necessary even with quantization schemes with 7 or 8 bits. This correction depends however only on a single
parameter, the amplitude σ of the single signal being correlated, that can be derived from the autocorrelation
itself, and is thus much simpler to implement.



3 Methods

Different approaches are possible to evaluate the relation between r(ρ) and R(ρ).

3.1 Direct correlation of pseudo-random sequences

The more direct method to evaluate this relation is by direct simulation, using pseudo-random partly correlated
sequences.

This has the advantage of being usable even for very complex data processing algorithms, involving multiple
quantizations. Its precision is limited by the length of the pseudo-random sequence. For accuracies of 10−5,
sequences of ≃ 1010 samples are required, and this increases by a couple of orders of magnitude when a
channelization stage is present in the processing. For this reason it has not been used here and is listed only for
completeness.

3.2 Integration of the bivariate distribution

The distribution in equation (1) can be directly integrated for each of the possible values of the two quantized
signals. An integral form for the normalized bivariate distribution has been computed using a Legendre approx-
imation by [2], implemented as a C routine by [8] as part of the reduction software for the Green Bank telescope
and of the ALMA interferometer. In Matlab the function mvncdf, also based on the Drezner algorithm, can be
used. This function is then directly used in a modified version of equation (4) that exploits the symmetries in the
threshold values. Even with this optimization, the integration requires a summation of about n2/2 evaluations
of the mvncdf function, that becomes significant for large values of n.

3.3 Application of the Price’s theorem

The integral relation of the previous case can be used to compute the derivative dR/dρ, using Price’s theorem
[7]. This is then integrated over ρ starting from R(0) = 0. This approach is described for example for n = 4 in
the data reduction software for the IRAM interferometer [3] and for an arbitrary number of levels in the GBT
documentation [8].

Even in this approach the integrand is a sum over n2 values of the thresholds, that must be evaluated in
hundreds of points by the integration algorithm. Therefore it is advantageous only when the full functional
form of R(ρ) is required, and for n small.

3.4 Taylor expansion of the bivariate distribution

Finding a computationally efficient algorithm for equation (4) is a well known problem. For quantizations with
a small number of levels, n up to 4–8, an integral relation has been proposed [5]. Other approximate formulas
for n = 2 to 4 have been proposed for the EVLA [6]. These approaches are not suitable for large n.

For the ALMA correlator one of the authors has proposed a different method based on a series expansion
of the bivariate distribution [1]. Equation (1) can be Taylor expanded as a power series of ρ for constant σ1,2,
and the first terms of the expansion integrated directly in equation (4).
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where Qk(x) is a polynomial of degree k in x.
A nice feature of this relation is that terms in x1 and x2 are completely separated. As a consequence the

integrals are also separated, and must be evaluated only in 2n points, compared with O(n2) points when using
the full integral L(x1, x2; ρ).

The first terms have been explicitly derived in [4], that also noted the separation of the terms in x1 and x2.



Q0(x) = 1

Q1(x) = x

Q2(x) = x2 − 1

Q3(x) = x(x2 − 3)

Q4(x) = x4 − 6x2 + 3

(6)

Successive terms can be derived noting that the polynomials Qk satisfy the relation:

Qk(x) exp

(

−
x2

2

)

= −
d

dx

(

Qk−1(x) exp

(

−
x2

2

))

(7)

Expressing polynomials as Qk(x) =
∑k

i=0 qk,ix
i, the coefficients qk,i can be derived by the recursive relation:

qk,i = q(k−1),(i−1) − (i+ 1)q(k−1),(i+1) (8)

If the signal has zero mean, even order terms cancel in equation (4) due to symmetry. Assuming this is the
case, substituting expansion (5) in (4), and exploiting relation (7) to perform the integration, we obtain:
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Collecting terms with the same vi, vj , using the quantization scheme in (3), and noting that the exponential
vanishes for the thresholds l0, ln = ±∞, we obtain, for zero mean signals:
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where the sum in (9) and the first polynomial contain only odd values of k.
The method is very efficient, as the argument in the summation for Ak is derived just once for each quan-

tization threshold. Only positive thresholds can be considered, due to symmetry. The computation intensity
is thus linear with the number of levels, instead of quadratic. The exponentials can be computed once and
multiplied element-by-element to the functions Qk.

The accuracy of the method is rather good, especially with many-bit quantizations. For n = 15 and σ = 2.82
(the optimal quantization level), the 5th and 7th order approximations give residuals below 10−6 up to ρ = 0.45
and 0.62 respectively. The residual at ρ = 0.98 for a 5th order approximation is about 2 10−4. This method is
suited for fast computation of the Van Vleck correction in correlators using 4 or 5 bits.

4 Derivation of quantization effects

The formulas derived above can be used to determine in a quantitative way the effects described in section 1.



4.1 Quantization gain

The linear term in (10) can be directly used to compute the correlator gain gl(σ, n) is:

gl(σ, n) =
Rlin(ρ, σ, n)
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For large n the sum can be approximated by an integral that is exactly the finite integral of a Gaussian
distribution, up to the clipping point of the quantizer. Then the gain is approximately the fraction of the signal
distribution that is not clipped, and is less than 1 because of the clipping. For small signals, or n small, gl(σ, n)
has a more complex behavior, approaching infinity or 0 for n even/odd, respectively.

4.2 Quantization efficiency

The quantization efficiency η is defined as the ratio of the signal-to-noise before and after the quantization. It
has been computed by several authors. A handy formula has been computed by [9]. The same result can be
found also by dividing the gain in equation (11) by the variance of the quantized product σR, computed in the
case ρ = 0.
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where σr = σ2 is the variance of the unquantified correlation for ρ = 0 and the sums extend from i =
−(n− 1/2) to (n+ 1/2).

4.3 Nonlinearities

The next terms in the equation (10) describe the deviation from the linear case. The dominant term up to large
values of ρ is the second, proportional to ρ3. The ratio of the second to the first term, proportional to ρ2, is the
fractional error in the determination of the correlation function due to quantization nonlinearities. This error
directly translates into mapping artifacts, and thus in map dynamic range.

For example assuming that a strong point source is present in the mapped field, with position ~r and peak
correlation ρ, artifacts proportional to this nonlinearity will appear at position 3~r. Intermodulation products
between different strong sources will also show up as ghost sources with similar amplitudes. Further terms will
produce ghost images at positions 5~r, 7~r and so on, but typically with a much reduced amplitude.

For the case of signals with equal amplitudes σ, the ratio of the ghost to the true image is:

N3(σ, ρ) =
ρ2
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A strong point source may give a correlation of ρ = 0.2 to 0.5, and the ratio (13) must be evaluated up to
these values of ρ.

5 Results

In the next sections we compute the correlator gain, the correlator efficiency and the behavior of the nonlin-
earities for quantization schemes of 4 to 9 bits, as a function of the signal amplitude σ and of the correlation
coefficient ρ. All these results have been evaluated in Matlab, using the bivariate distribution to compute the
quantization gain, and using the polynomial approximation to evaluate the nonlinear terms.

The goal is to provide limits in the signal amplitude σ for which the quantization process does not degrade
the linearity and the noise of the quantized correlation above predefined limits. It is assumed that the correlation
products will not be corrected for these effects, with the possible exception for autocorrelation (total power)
products, and that therefore all nonlinearities and gain fluctuations would directly impact the imaging quality.



The amplitude is always expressed as a fraction of the maximum quantized value, (n− 1)/2, to compare in the
same plots quantization schemes with very different number of levels.

The limits considered have been derived from system level specifications for the Square Kilometre Array:

• Correlation gain stability: SKA gain stability must be better than 4 10−4. As signal amplitude varies
with time, we assumed this constrain on gain accuracy, for ρ < 0.9. The autocorrelation case has been
treated separately.

• Quantization noise: The total quantization noise in SKA digital signal processing must be less than
2%. A reasonable budget considering multiple quantizations in the system leaves 0.5% quantization noise
in the correlation, and 0.5% in possibly other three quantizations along the signal processing chain. We
also considered a 1% quantization loss in the correlator and reduced losses elsewhere. For the intrinsically
noisy 4 bit correlation, a limit of 1.5% or 2% of added noise in the correlator was assumed.

• Nonlinearities: Limits in nonlinearities were derived from those on mapping fidelity. We assumed a
relative error due to nonlinear terms equal to 10−4. Higher linearity may be required in previous stages
of signal processing, in order to prevent the generation of intermodulation or harmonics in the presence
of narrow-band radio frequecy interferences (RFI).

5.1 Correlator gain

The correlator gain for quantization schemes with 4 to 9 bits is shown in figure 1, as a function of the signal
root mean square (RMS) amplitude in units of the maximum quantization level. The gain is relatively stable
for a RMS level below 1/4 the peak digital value, and deviates again when the level drops below 0.8 times
the quantization interval. Outside these bounds the gain changes rather quickly. The gain error is absolutely
negligible for σ < 0.22, and increases to 0.1% for σ ≃ 0.28–0.3. For 8 bit quantization, the maximum allowable
signal amplitude is about 32–35 quantization steps.
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Figure 1: Correlator gain versus the input level for quantized cross-correlation, quantization with 4 to 9 bits

Autocorrelation gain (ρ = 1) is shown in figure 2. All quantization schemes with up to 7 bits produce gain
variations above 0.1%, and even with 9 bits the stable region is much reduced with respect to the cross correlation



case. A correction procedure is thus necessary in post-processing if high accuracy is required. For example,
a table of r(R) can be precomputed, and applied to the autocorrelation products using a spline interpolator.
The computing overhead is not particularly high, as in an interferometer the autocorrelations are just a small
fraction of the total correlation products, and as the function r(R) is univariate, monotone and fixed for a fixed
quantization scheme.

These errors affect also total power measurements obtained from quantized signals. If accuracies of the order
of 10−4 are required, a quantization correction must be used for total power measurements derived even from
8 bit quantized signals.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Input Level (re peak digital)

0.995

0.996

0.997

0.998

0.999

1

1.001

1.002

1.003

1.004

1.005

G
a
in

Correlator gain for 4,5,6,7,8 and 9 bit quantiser with rho= 1

4 bit

5 bit

6 bit

7 bit

8 bit

9 bit

Figure 2: Autocorrelation gain versus input level for quantization with 4 to 9 bits

5.2 Correlation efficiency and quantization losses

Figure 3 shows the quantization losses as a function of the input level for cross correlation. The correlation
efficiency is affected at low signal levels by the quantization noise, while at high signal levels is affected by
clipping. The curves for 7, 8 and 9 bits show that the effect due to clipping becomes apparent at an input
level of 0.3 and this result does not change for 10 or more bits. At low input levels, an excess noise of 0.5% is
introduced when the signal amplitude is ≃ 4 quantization steps.

As the number of bits decreases, the minimum of the noise is found at larger signal amplitudes. For 4 or 5
bits the quantization losses in the linear region (σ < 0.25 of the clipping value) are significantly higher than at
the optimum level. If no quantization corrections are used, a minimum SNR degradation of 2% and 0.6% must
be considered for 4 and 5 bits quantization, instead of the canonical values 1.15% and 0.35% respectively, due
to the non optimal signal levels.

5.3 Nonlinearities

Nonlinearities are evaluated computing the normalized residual (R(ρ)− gσ2ρ)/R(ρ), using relations (11) for g
and (10) for R(ρ). Results using equation (13) give very similar results. These quantities are plotted in figure 4
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Figure 3: Correlation losses, in percent, for quantizations of 4 to 9 bits as a function of the input level

for 4 to 9 bits quantizations. The curves are computed for ρ = 0.3. i.e. for strongly correlated signals.
Even at these high correlation values, nonlinear terms are below 10−4 for σ < 0.35. In the linear gain region

nonlinear terms are below 10−7.

5.4 Dependence of the range on the correlation coefficient

All the above limits can be graphically represented in a single graph, as an allowed region in the amplitude-
correlation plane. An example of these graphs are provided, for quantizations using 4 and 5 bits, in figure 5.

From these figures is possible to infer the following informations:

• the convex curve shows the quantization loss (right scale). Vertical limits correspond to a quantization
loss of 0.5% (dash-dot) and 1% (dashed), for the 5 bit case, and to 1.5% and 2%t for the 4 bits case

• The narrower shaded area corresponds to a gain error of less than 10−4

• The wider shaded area corresponds to a nonlinear term of less than 10−4.

The intersection of these three conditions determine the allowable region for the signal amplitude.
We can see that for 4 bits of quantization the gain condition can be satisfied only degrading the quantization

losses to 2%. For 5 bits, a 0.5% quantization loss is compatible with gain and linearity constrains only for a
specific amplitude value, σ = 4 (0.25 of the clipping value).

In general:

• the lower limit is always determined by the correlation efficiency which is the main source of noise at low
signal level;

• the upper limit is always given by the correlation gain degradation and is mainly caused by clipping. This
occurs for a signal amplitude, normalized to the maximum representable value, of approximately 0.25 for
4 bit quantization, slightly increasing to 0.27 for 6 or more bits;
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Figure 4: Relative nonlinearity of the quantized correlation for 4 to 9 bit quantization for ρ = 0.3

• excluding the autocorrelation case, the nonlinearity gives always less restrictive limits for the level signal
compared to those derived by the correlator gain and the correlation efficiency: the nonlinear term in
R(r) is negligible in the range allowed for the signal amplitude up to ρ < 0.9

• The dynamic range for the input signal is basically null for quantization with 5 bits. It is extended by 6
dB for every increment of one bit and by a further 3 dB if 1% added noise is acceptable;

In table 1 the limits on signal amplitude and the derived dynamic range are shown. The first three rows list
the minimum level for three different values of the added noise. The fourth row lists the upper bounds. All values
are expressed in terms of the quantization step. The last two rows report the dynamic range 20 log(Max/min).

Table 1: First 3 rows: lower bounds for the input amplitude, in quantization steps; row 4: Upper bound for the
signal level; last 2 rows: signal dynamic range

Added Noise 4bit 5bit 6bit 7bit 8bit 9bit

min
0.5% - 4.1 4.1 4.1 4.2 4.3
1% - 2.9 2.9 2.95 3.1 3.3
2% 2.02

Max 2.02 4.2 8.4 17.0 34.2 68.6

DR[dB]
0.5% - 0.2 6.3 12.2 18.4 23.9
1% - 3.2 9.3 15.4 21.7 27

6 Nonlinearities due to rounding

Rounding a digital signal, by discarding the least nr significant bits, is very similar to a re-quantization, and
the same approach can be used. The rounding operation introduces both a quantization noise, that can be



Figure 5: Gain error, quantization noise and nonlinearity level as a function of ρ and σ: 4 and 5 bit quantization

estimated using equation (11), and a bias, due to the discrete nature of the signal being quantized.
Offset rounding, consisting in summing 0.5 to the number to be rounded and then taking the integer part,

produces a bias due to the fact that the fraction 0.5 is always rounded up. The bias is 2−nr−1, i.e. half
the quantization step before rounding. To prevent this, if the fraction is exactly 0.5 the rounding is always
performed away form zero. This however causes a discontinuity in the rounding function, as the level (or the
two levels, for n even) close to zero are slightly smaller than the others. The effect can be modeled using the
correct levels in equations (4) and (9).

The main effect is a slight increment on the gain, due to the systematic increment of the signal amplitude.
If the re-quantized signal has a sufficient number of bits, the sums in equation (10) can be approximated with
an integral. The term A1 in equation (10) is then

A1(σ) ≃
√
2πσ + sr (14)

where sr = 2−nr is the quantization step before rounding and σ1,2 are the signal amplitudes. The rounding
gain gr is

gr(σ1, σ2) ≃ 1 +
sr√
2π

σ1 + σ2

σ1σ2
(15)

For equal signal amplitudes, the gain error gr − 1 is inversely proportional to the RMS amplitude of the
signal to be rounded. For a signal that is in the linear region of an integer representation with 10–12 bits the



requantization introduces a gain error that is around 1%. The error drops to 0.1% for an unquantized signal of
13–15 bits, and to 10−4 if the unrounded RMS amplitude is at least 8000, i.e. for signals of at least 16 bits.

The nonlinear term in the Taylor expansion for R(ρ) can be computed in the same way. When other nonlinear
effects are negligible, the relative amplitude of the cubic term with respect to the linear term, N3(ρ, σ) (eq. 13),
is given by:

N3(ρ, σ1, σ2) ≃ ρ2
1

12π

s2r
σ1σ2

(16)

i.e. is inversely proportional to the squared amplitude of the unrounded signal. For unrounded signal
amplitudes as low as 16, N3 < 10−4, even for large values of ρ. Nonlinearity due to rounding is then negligible
in most practical cases.

7 Conclusion

The polynomial expressions found in equations (10) for the relation R(ρ) allows for a relatively simple and
accurate evaluation of the quantization effects. This is useful in large interferometers, with hundreds of elements
and thousands of frequency points, as is the case for the SKA.

For correlation schemes using at least 5 bits in the sample representation, there is a relatively wide range
of input signal levels for which the correlation process is highly accurate and linear. In this case it may be
advantageous to completely eliminate the quantization correction by keeping the signal amplitude in the linear
range computed above. For quantization with 4 or 5 bits this range does not correspond to the optimal value
for low quantization losses. This range depends slightly on the maximum expected correlation coefficient.

The quantization introduces a nonlinearity in the autocorrelation for digitizations of up to 7–8 bits. This
effect is present also in total power measurements of digitized samples, and amounts to ≃ 0.1% for 7 bit
quantization. A post-correlation correction, e.g. using a spline approximation, is advisable when high accuracy
is required.

Both gain stability and nonlinear terms become significant when the digitized signal level exceeds 0.25–0.27
times the clipping level. Gain is extremely stable for signal levels below 0.22 times the clipping level, down to a
RMS amplitude of 0.8 times the quantization step. The lower limit in the signal amplitude is usually imposed
by the added quantization noise. This is around 0.5% or 1% for σ = 2.9 and 4.1 quantization steps, respectively,
independently from the quantization scheme.

Nonlinearities in the correlation process are negligible in this range of signal levels, allowing a mapping
dynamic range of 106 up to correlation coefficients of ρ = 0.9. For smaller correlation coefficients (ρ < 0.1) the
linearity is always better than 10−10.

Rounding away form zero introduces a mild compression (gain increasing at low amplitudes) in most cases.
The gain error is about 1% when the unrounded signal has a RMS amplitude of 80, and goes below 10−4 for
rounding of signals with RMS > 8000. If a high signal accuracy is required, other forms of symmetric rounding
must be used to round signals represented with less than 14 bits. Nonlinearities induced by rounding are usually
well below 60 dB.
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