
Python scientific packages
Installation - 1

Scientific packages are usually not
installed by default.
Installation procedures are several and
may depend on the O.S. Here follow a
few suggestions:

ipython, numpy, scipy, matplotlib
Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: All main distributions include scientific
packages. If you want to have the latest version
you may install from the PyPI repository.
astropy:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository or from PyPI.
astroquery:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository (but not all of them provide this
package) or from PyPI.

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Python scientific packages
Installation - 1

Scientific packages are usually not
installed by default.
Installation procedures are several and
may depend on the O.S. Here follow a
few suggestions:
ipython, numpy, scipy, matplotlib

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: All main distributions include scientific
packages. If you want to have the latest version
you may install from the PyPI repository.

astropy:
Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository or from PyPI.
astroquery:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository (but not all of them provide this
package) or from PyPI.

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Python scientific packages
Installation - 1

Scientific packages are usually not
installed by default.
Installation procedures are several and
may depend on the O.S. Here follow a
few suggestions:
ipython, numpy, scipy, matplotlib

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: All main distributions include scientific
packages. If you want to have the latest version
you may install from the PyPI repository.
astropy:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository or from PyPI.

astroquery:
Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository (but not all of them provide this
package) or from PyPI.

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Python scientific packages
Installation - 1

Scientific packages are usually not
installed by default.
Installation procedures are several and
may depend on the O.S. Here follow a
few suggestions:
ipython, numpy, scipy, matplotlib

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: All main distributions include scientific
packages. If you want to have the latest version
you may install from the PyPI repository.
astropy:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository or from PyPI.
astroquery:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository (but not all of them provide this
package) or from PyPI.

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Python scientific packages
Installation - 1

Scientific packages are usually not
installed by default.
Installation procedures are several and
may depend on the O.S. Here follow a
few suggestions:
ipython, numpy, scipy, matplotlib

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: All main distributions include scientific
packages. If you want to have the latest version
you may install from the PyPI repository.
astropy:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository or from PyPI.
astroquery:

Windows: Can be installed from PyPI repository
MacOS: You may either use Homebrew or install
from PyPI repository
Linux: You may install from the distribution
repository (but not all of them provide this
package) or from PyPI.

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

the Python Package Index
Installation - 2

PyPI is the main repository for Python
packages and applications

http://pypi.python.org
The command to be used is pip. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation will require
the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better use it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

When both python 2.x and python
3.x are installed you may want to
specify the command as: pip3

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

http://pypi.python.org

the Python Package Index
Installation - 2

PyPI is the main repository for Python
packages and applications

http://pypi.python.org
The command to be used is pip. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation will require
the C/C++ compiler

Some suggestions:
If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better use it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

When both python 2.x and python
3.x are installed you may want to
specify the command as: pip3

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

http://pypi.python.org

the Python Package Index
Installation - 2

PyPI is the main repository for Python
packages and applications

http://pypi.python.org
The command to be used is pip. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation will require
the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better use it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

When both python 2.x and python
3.x are installed you may want to
specify the command as: pip3

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

http://pypi.python.org

the Python Package Index
Installation - 2

PyPI is the main repository for Python
packages and applications

http://pypi.python.org
The command to be used is pip. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation will require
the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better use it.

Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

When both python 2.x and python
3.x are installed you may want to
specify the command as: pip3

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

http://pypi.python.org

the Python Package Index
Installation - 2

PyPI is the main repository for Python
packages and applications

http://pypi.python.org
The command to be used is pip. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation will require
the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better use it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package

Avoid to use both installation methods
(maybe at different times)

When both python 2.x and python
3.x are installed you may want to
specify the command as: pip3

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

http://pypi.python.org

the Python Package Index
Installation - 2

PyPI is the main repository for Python
packages and applications

http://pypi.python.org
The command to be used is pip. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation will require
the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better use it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

When both python 2.x and python
3.x are installed you may want to
specify the command as: pip3

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

http://pypi.python.org

the Python Package Index
Installation - 2

PyPI is the main repository for Python
packages and applications

http://pypi.python.org
The command to be used is pip. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation will require
the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better use it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

When both python 2.x and python
3.x are installed you may want to
specify the command as: pip3

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

http://pypi.python.org

the Python Package Index
Installation - 2

PyPI is the main repository for Python
packages and applications

http://pypi.python.org
The command to be used is pip. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation will require
the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better use it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

When both python 2.x and python
3.x are installed you may want to
specify the command as: pip3

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

http://pypi.python.org

the Python Package Index
Installation - 2

PyPI is the main repository for Python
packages and applications

http://pypi.python.org
The command to be used is pip. E.g.:

pip install astropy
pip list
pip uninstall astropy

Sometimes the installation will require
the C/C++ compiler
Some suggestions:

If you find a standard package for your O.S.
(e.g.: msi [Windows], pkg [MacOS], rpm/deb
[Linux]) it may be better use it.
Otherwise use pip.
pip is also recommended if you need the
latest version of the package
Avoid to use both installation methods
(maybe at different times)

When both python 2.x and python
3.x are installed you may want to
specify the command as: pip3

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

http://pypi.python.org

Interactive python: ipython
ipython - 3

ipython is an enhanced python
environment well suited for interactive use.
Let’s see an example:
$ ipython
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
Type "copyright", "credits" or "license" for more information.

IPython 5.2.2 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython’s features.
%quickref -> Quick reference.
help -> Python’s own help system.
object? -> Details about ’object’, use ’object??’ for extra details.
...

The ipython environment:
Line completion and history
Interaction with O.S.
Enhanced introspection tools
Simpler graphics
“magic” commands

ipython --pylab
includes numpy as np
includes simplified matplotlib commands

ipython can be used with other programming lan-
guages and provides support for parallel comput-
ing applications, but these aspects will not be cov-
ered here.

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Interactive python: ipython
ipython - 3

ipython is an enhanced python
environment well suited for interactive use.
Let’s see an example:
$ ipython
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
Type "copyright", "credits" or "license" for more information.

IPython 5.2.2 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython’s features.
%quickref -> Quick reference.
help -> Python’s own help system.
object? -> Details about ’object’, use ’object??’ for extra details.
...

The ipython environment:
Line completion and history
Interaction with O.S.
Enhanced introspection tools
Simpler graphics
“magic” commands

ipython --pylab
includes numpy as np
includes simplified matplotlib commands

ipython can be used with other programming lan-
guages and provides support for parallel comput-
ing applications, but these aspects will not be cov-
ered here.

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Interactive python: ipython
ipython - 3

ipython is an enhanced python
environment well suited for interactive use.
Let’s see an example:
$ ipython
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
Type "copyright", "credits" or "license" for more information.

IPython 5.2.2 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython’s features.
%quickref -> Quick reference.
help -> Python’s own help system.
object? -> Details about ’object’, use ’object??’ for extra details.
...

The ipython environment:
Line completion and history
Interaction with O.S.
Enhanced introspection tools
Simpler graphics
“magic” commands

ipython --pylab
includes numpy as np
includes simplified matplotlib commands

ipython can be used with other programming lan-
guages and provides support for parallel comput-
ing applications, but these aspects will not be cov-
ered here.

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Interactive python: ipython
ipython - 3

ipython is an enhanced python
environment well suited for interactive use.
Let’s see an example:
$ ipython
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
Type "copyright", "credits" or "license" for more information.

IPython 5.2.2 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython’s features.
%quickref -> Quick reference.
help -> Python’s own help system.
object? -> Details about ’object’, use ’object??’ for extra details.
...

The ipython environment:
Line completion and history
Interaction with O.S.
Enhanced introspection tools
Simpler graphics
“magic” commands

ipython --pylab
includes numpy as np
includes simplified matplotlib commands

ipython can be used with other programming lan-
guages and provides support for parallel comput-
ing applications, but these aspects will not be cov-
ered here.

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Interactive python: ipython
ipython - 3

ipython is an enhanced python
environment well suited for interactive use.
Let’s see an example:
$ ipython
Python 3.5.2 (default, Nov 23 2017, 16:37:01)
Type "copyright", "credits" or "license" for more information.

IPython 5.2.2 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython’s features.
%quickref -> Quick reference.
help -> Python’s own help system.
object? -> Details about ’object’, use ’object??’ for extra details.
...

The ipython environment:
Line completion and history
Interaction with O.S.
Enhanced introspection tools
Simpler graphics
“magic” commands

ipython --pylab
includes numpy as np
includes simplified matplotlib commands

ipython can be used with other programming lan-
guages and provides support for parallel comput-
ing applications, but these aspects will not be cov-
ered here.

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Numerical Python
package: numpy - 4

The numpy (Numerical Python) module is
usually imported as np.

It provides:

1 An ndarray object:
collection of homogeneous items
organized as an N-dimensional array
accessed by indexes

2 Fast operations on ndarray objects
3 Linear algebra functions
4 Fourier transforms
5 Random numbers generators

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Numerical Python
package: numpy - 4

The numpy (Numerical Python) module is
usually imported as np.

It provides:

1 An ndarray object:
collection of homogeneous items
organized as an N-dimensional array
accessed by indexes

2 Fast operations on ndarray objects

3 Linear algebra functions
4 Fourier transforms
5 Random numbers generators

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Numerical Python
package: numpy - 4

The numpy (Numerical Python) module is
usually imported as np.

It provides:

1 An ndarray object:
collection of homogeneous items
organized as an N-dimensional array
accessed by indexes

2 Fast operations on ndarray objects
3 Linear algebra functions

4 Fourier transforms
5 Random numbers generators

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Numerical Python
package: numpy - 4

The numpy (Numerical Python) module is
usually imported as np.

It provides:

1 An ndarray object:
collection of homogeneous items
organized as an N-dimensional array
accessed by indexes

2 Fast operations on ndarray objects
3 Linear algebra functions
4 Fourier transforms

5 Random numbers generators

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Numerical Python
package: numpy - 4

The numpy (Numerical Python) module is
usually imported as np.

It provides:

1 An ndarray object:
collection of homogeneous items
organized as an N-dimensional array
accessed by indexes

2 Fast operations on ndarray objects
3 Linear algebra functions
4 Fourier transforms
5 Random numbers generators

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Numerical Python
package: numpy - 4

The numpy (Numerical Python) module is
usually imported as np.

It provides:

1 An ndarray object:
collection of homogeneous items
organized as an N-dimensional array
accessed by indexes

2 Fast operations on ndarray objects
3 Linear algebra functions
4 Fourier transforms
5 Random numbers generators

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Numerical Python
package: numpy - 4

The numpy (Numerical Python) module is
usually imported as np.

It provides:

1 An ndarray object:
collection of homogeneous items
organized as an N-dimensional array
accessed by indexes

2 Fast operations on ndarray objects
3 Linear algebra functions
4 Fourier transforms
5 Random numbers generators

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 1
package: numpy - 5

array creation:
>>> import numpy as np

>>> ar1 = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar2 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])

>>> ar1.size, ar2.size
(8, 8)
>>> ar1.shape, ar2.shape
((8,), (2, 4))
>>> ar1.dtype, ar2.dtype
(dtype(’int64’), dtype(’int64’))

>>> ar5 = np.zeros((2,4))
>>> ar6 = np.ones((2,4,3))

>>> ar7 = np.identity(10)

>>> ar8 = np.linspace(0, np.pi, 5)

>>> # ar9 = np.loadtxt("datafile.txt")
>>> # ar9 = np.fromfile("datafile.txt")

⇐

Creating an 8 elements
array arranged as a 1-D
vector from a python list

⇐

ar2 has 8 elements
too, but is arranged as
a 2 by 4 matrix

⇐
shape shows the arrange-
ment of arrays

⇐
dtype shows the type of
array elements

⇐A 2 by 4 array of zero’s

⇐ A 2 by 4 by 3 array of one’s

⇐ The identity matrix

⇐
A vector of 5 equally
spaced values in [0, pi)

⇐
⇐

Simple ways to read
data from files into
arrays

“views” on arrays:
>>> ar3 = np.arange(1, 9)
>>> ar4 = ar3.reshape(2,4)
>>> ar3
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 4],

[5, 6, 7, 8]])
>>> ar3[3] = 0
>>> ar3
array([1, 2, 3, 0, 5, 6, 7, 8])
>>> ar4
array([[1, 2, 3, 0],

[5, 6, 7, 8]])

⇐ A vector of values [1..8]

⇐
The very same array, but
“seen” as a 2 by 4 array

⇐
If we change one ele-
ment of ar3 ...

⇐
... the same element is
changed in ar4

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 2
package: numpy - 6

Slices and selection of sub-arrays:
>>> a=np.arange(150).reshape(10,5,3)
>>> a
array([[[0, 1, 2],

[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[12, 13, 14]],

[[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]],

...

>>> a[1,:,:]
array([[15, 16, 17],

[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]])

>>> a[2:4,:,:]
array([[[30, 31, 32],

[33, 34, 35],
[36, 37, 38],
[39, 40, 41],
[42, 43, 44]],

[[45, 46, 47],
[48, 49, 50],
[51, 52, 53],
[54, 55, 56],
[57, 58, 59]]])

>>> a[:,1,1]
array([4, 19, 34, 49, 64, 79, 94, 109, 124, 139])

⇐Make a 10 by 5 by 3 array

⇐
You may think of it as a se-
quence of ten 5 by 3 arrays

⇐

This is the second element of the 10 el-
ements sequence (remember: the first
element has index 0)

⇐
The third and fourth elements of the 10
elements sequence

⇐
A vector of all the elements of index
[1,1] of the 10 elements sequence

��
��

��
��

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 2
package: numpy - 6

Slices and selection of sub-arrays:
>>> a=np.arange(150).reshape(10,5,3)
>>> a
array([[[0, 1, 2],

[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[12, 13, 14]],

[[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]],

...

>>> a[1,:,:]
array([[15, 16, 17],

[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]])

>>> a[2:4,:,:]
array([[[30, 31, 32],

[33, 34, 35],
[36, 37, 38],
[39, 40, 41],
[42, 43, 44]],

[[45, 46, 47],
[48, 49, 50],
[51, 52, 53],
[54, 55, 56],
[57, 58, 59]]])

>>> a[:,1,1]
array([4, 19, 34, 49, 64, 79, 94, 109, 124, 139])

⇐Make a 10 by 5 by 3 array

⇐
You may think of it as a se-
quence of ten 5 by 3 arrays

⇐

This is the second element of the 10 el-
ements sequence (remember: the first
element has index 0)

⇐
The third and fourth elements of the 10
elements sequence

⇐
A vector of all the elements of index
[1,1] of the 10 elements sequence

��
��

��
��

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 2
package: numpy - 6

Slices and selection of sub-arrays:
>>> a=np.arange(150).reshape(10,5,3)
>>> a
array([[[0, 1, 2],

[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[12, 13, 14]],

[[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]],

...

>>> a[1,:,:]
array([[15, 16, 17],

[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]])

>>> a[2:4,:,:]
array([[[30, 31, 32],

[33, 34, 35],
[36, 37, 38],
[39, 40, 41],
[42, 43, 44]],

[[45, 46, 47],
[48, 49, 50],
[51, 52, 53],
[54, 55, 56],
[57, 58, 59]]])

>>> a[:,1,1]
array([4, 19, 34, 49, 64, 79, 94, 109, 124, 139])

⇐Make a 10 by 5 by 3 array

⇐
You may think of it as a se-
quence of ten 5 by 3 arrays

⇐

This is the second element of the 10 el-
ements sequence (remember: the first
element has index 0)

⇐
The third and fourth elements of the 10
elements sequence

⇐
A vector of all the elements of index
[1,1] of the 10 elements sequence

��
��

��
��

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 2
package: numpy - 6

Slices and selection of sub-arrays:
>>> a=np.arange(150).reshape(10,5,3)
>>> a
array([[[0, 1, 2],

[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[12, 13, 14]],

[[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]],

...

>>> a[1,:,:]
array([[15, 16, 17],

[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]])

>>> a[2:4,:,:]
array([[[30, 31, 32],

[33, 34, 35],
[36, 37, 38],
[39, 40, 41],
[42, 43, 44]],

[[45, 46, 47],
[48, 49, 50],
[51, 52, 53],
[54, 55, 56],
[57, 58, 59]]])

>>> a[:,1,1]
array([4, 19, 34, 49, 64, 79, 94, 109, 124, 139])

⇐Make a 10 by 5 by 3 array

⇐
You may think of it as a se-
quence of ten 5 by 3 arrays

⇐

This is the second element of the 10 el-
ements sequence (remember: the first
element has index 0)

⇐
The third and fourth elements of the 10
elements sequence

⇐
A vector of all the elements of index
[1,1] of the 10 elements sequence

��
��

��
��

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 2
package: numpy - 6

Slices and selection of sub-arrays:
>>> a=np.arange(150).reshape(10,5,3)
>>> a
array([[[0, 1, 2],

[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[12, 13, 14]],

[[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]],

...

>>> a[1,:,:]
array([[15, 16, 17],

[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]])

>>> a[2:4,:,:]
array([[[30, 31, 32],

[33, 34, 35],
[36, 37, 38],
[39, 40, 41],
[42, 43, 44]],

[[45, 46, 47],
[48, 49, 50],
[51, 52, 53],
[54, 55, 56],
[57, 58, 59]]])

>>> a[:,1,1]
array([4, 19, 34, 49, 64, 79, 94, 109, 124, 139])

⇐Make a 10 by 5 by 3 array

⇐
You may think of it as a se-
quence of ten 5 by 3 arrays

⇐

This is the second element of the 10 el-
ements sequence (remember: the first
element has index 0)

⇐
The third and fourth elements of the 10
elements sequence

⇐
A vector of all the elements of index
[1,1] of the 10 elements sequence

��
��

��
��

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 2
package: numpy - 6

Slices and selection of sub-arrays:
>>> a=np.arange(150).reshape(10,5,3)
>>> a
array([[[0, 1, 2],

[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[12, 13, 14]],

[[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]],

...

>>> a[1,:,:]
array([[15, 16, 17],

[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]])

>>> a[2:4,:,:]
array([[[30, 31, 32],

[33, 34, 35],
[36, 37, 38],
[39, 40, 41],
[42, 43, 44]],

[[45, 46, 47],
[48, 49, 50],
[51, 52, 53],
[54, 55, 56],
[57, 58, 59]]])

>>> a[:,1,1]
array([4, 19, 34, 49, 64, 79, 94, 109, 124, 139])

⇐Make a 10 by 5 by 3 array

⇐
You may think of it as a se-
quence of ten 5 by 3 arrays

⇐

This is the second element of the 10 el-
ements sequence (remember: the first
element has index 0)

⇐
The third and fourth elements of the 10
elements sequence

⇐
A vector of all the elements of index
[1,1] of the 10 elements sequence

��
��

��
��

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

The array class - 2
package: numpy - 6

Slices and selection of sub-arrays:
>>> a=np.arange(150).reshape(10,5,3)
>>> a
array([[[0, 1, 2],

[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[12, 13, 14]],

[[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]],

...

>>> a[1,:,:]
array([[15, 16, 17],

[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]])

>>> a[2:4,:,:]
array([[[30, 31, 32],

[33, 34, 35],
[36, 37, 38],
[39, 40, 41],
[42, 43, 44]],

[[45, 46, 47],
[48, 49, 50],
[51, 52, 53],
[54, 55, 56],
[57, 58, 59]]])

>>> a[:,1,1]
array([4, 19, 34, 49, 64, 79, 94, 109, 124, 139])

⇐Make a 10 by 5 by 3 array

⇐
You may think of it as a se-
quence of ten 5 by 3 arrays

⇐

This is the second element of the 10 el-
ements sequence (remember: the first
element has index 0)

⇐
The third and fourth elements of the 10
elements sequence

⇐
A vector of all the elements of index
[1,1] of the 10 elements sequence

��
��

��
��

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Simple array operations
package: numpy - 7

array <op> scalar:
>>> a = np.arange(0., 10, 0.3)
>>> a
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3. ,

3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.4, 5.7, 6. , 6.3,
6.6, 6.9, 7.2, 7.5, 7.8, 8.1, 8.4, 8.7, 9. , 9.3, 9.6,
9.9])

>>> a*3
array([0. , 0.9, 1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2,

8.1, 9. , 9.9, 10.8, 11.7, 12.6, 13.5, 14.4, 15.3,
16.2, 17.1, 18. , 18.9, 19.8, 20.7, 21.6, 22.5, 23.4,
24.3, 25.2, 26.1, 27. , 27.9, 28.8, 29.7])

The operation (+, -, *, /, ...) is per-
formed on each element of the ar-
ray

array <op> array:
>>> b = np.arange(10., 0, -0.3)
>>> b
array([10. , 9.7, 9.4, 9.1, 8.8, 8.5, 8.2, 7.9, 7.6,

7.3, 7. , 6.7, 6.4, 6.1, 5.8, 5.5, 5.2, 4.9,
4.6, 4.3, 4. , 3.7, 3.4, 3.1, 2.8, 2.5, 2.2,
1.9, 1.6, 1.3, 1. , 0.7, 0.4, 0.1])

>>> a+b
array([10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,

10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,
10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,
10.])

The operation is performed ele-
ment by element. The operands
must be of the same size and
shape

Dot product (
∑

aibi):
>>> np.dot(a,b)
555.38999999999726

Vector product:
>>> prod = np.outer(a,b)
>>> prod.shape
(34, 34)

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Simple array operations
package: numpy - 7

array <op> scalar:
>>> a = np.arange(0., 10, 0.3)
>>> a
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3. ,

3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.4, 5.7, 6. , 6.3,
6.6, 6.9, 7.2, 7.5, 7.8, 8.1, 8.4, 8.7, 9. , 9.3, 9.6,
9.9])

>>> a*3
array([0. , 0.9, 1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2,

8.1, 9. , 9.9, 10.8, 11.7, 12.6, 13.5, 14.4, 15.3,
16.2, 17.1, 18. , 18.9, 19.8, 20.7, 21.6, 22.5, 23.4,
24.3, 25.2, 26.1, 27. , 27.9, 28.8, 29.7])

The operation (+, -, *, /, ...) is per-
formed on each element of the ar-
ray

array <op> array:
>>> b = np.arange(10., 0, -0.3)
>>> b
array([10. , 9.7, 9.4, 9.1, 8.8, 8.5, 8.2, 7.9, 7.6,

7.3, 7. , 6.7, 6.4, 6.1, 5.8, 5.5, 5.2, 4.9,
4.6, 4.3, 4. , 3.7, 3.4, 3.1, 2.8, 2.5, 2.2,
1.9, 1.6, 1.3, 1. , 0.7, 0.4, 0.1])

>>> a+b
array([10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,

10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,
10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,
10.])

The operation is performed ele-
ment by element. The operands
must be of the same size and
shape

Dot product (
∑

aibi):
>>> np.dot(a,b)
555.38999999999726

Vector product:
>>> prod = np.outer(a,b)
>>> prod.shape
(34, 34)

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Simple array operations
package: numpy - 7

array <op> scalar:
>>> a = np.arange(0., 10, 0.3)
>>> a
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3. ,

3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.4, 5.7, 6. , 6.3,
6.6, 6.9, 7.2, 7.5, 7.8, 8.1, 8.4, 8.7, 9. , 9.3, 9.6,
9.9])

>>> a*3
array([0. , 0.9, 1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2,

8.1, 9. , 9.9, 10.8, 11.7, 12.6, 13.5, 14.4, 15.3,
16.2, 17.1, 18. , 18.9, 19.8, 20.7, 21.6, 22.5, 23.4,
24.3, 25.2, 26.1, 27. , 27.9, 28.8, 29.7])

The operation (+, -, *, /, ...) is per-
formed on each element of the ar-
ray

array <op> array:
>>> b = np.arange(10., 0, -0.3)
>>> b
array([10. , 9.7, 9.4, 9.1, 8.8, 8.5, 8.2, 7.9, 7.6,

7.3, 7. , 6.7, 6.4, 6.1, 5.8, 5.5, 5.2, 4.9,
4.6, 4.3, 4. , 3.7, 3.4, 3.1, 2.8, 2.5, 2.2,
1.9, 1.6, 1.3, 1. , 0.7, 0.4, 0.1])

>>> a+b
array([10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,

10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,
10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,
10.])

The operation is performed ele-
ment by element. The operands
must be of the same size and
shape

Dot product (
∑

aibi):
>>> np.dot(a,b)
555.38999999999726

Vector product:
>>> prod = np.outer(a,b)
>>> prod.shape
(34, 34)

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Simple array operations
package: numpy - 7

array <op> scalar:
>>> a = np.arange(0., 10, 0.3)
>>> a
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3. ,

3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.4, 5.7, 6. , 6.3,
6.6, 6.9, 7.2, 7.5, 7.8, 8.1, 8.4, 8.7, 9. , 9.3, 9.6,
9.9])

>>> a*3
array([0. , 0.9, 1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2,

8.1, 9. , 9.9, 10.8, 11.7, 12.6, 13.5, 14.4, 15.3,
16.2, 17.1, 18. , 18.9, 19.8, 20.7, 21.6, 22.5, 23.4,
24.3, 25.2, 26.1, 27. , 27.9, 28.8, 29.7])

The operation (+, -, *, /, ...) is per-
formed on each element of the ar-
ray

array <op> array:
>>> b = np.arange(10., 0, -0.3)
>>> b
array([10. , 9.7, 9.4, 9.1, 8.8, 8.5, 8.2, 7.9, 7.6,

7.3, 7. , 6.7, 6.4, 6.1, 5.8, 5.5, 5.2, 4.9,
4.6, 4.3, 4. , 3.7, 3.4, 3.1, 2.8, 2.5, 2.2,
1.9, 1.6, 1.3, 1. , 0.7, 0.4, 0.1])

>>> a+b
array([10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,

10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,
10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,
10.])

The operation is performed ele-
ment by element. The operands
must be of the same size and
shape

Dot product (
∑

aibi):
>>> np.dot(a,b)
555.38999999999726

Vector product:
>>> prod = np.outer(a,b)
>>> prod.shape
(34, 34)

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Simple array operations
package: numpy - 7

array <op> scalar:
>>> a = np.arange(0., 10, 0.3)
>>> a
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3. ,

3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.4, 5.7, 6. , 6.3,
6.6, 6.9, 7.2, 7.5, 7.8, 8.1, 8.4, 8.7, 9. , 9.3, 9.6,
9.9])

>>> a*3
array([0. , 0.9, 1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2,

8.1, 9. , 9.9, 10.8, 11.7, 12.6, 13.5, 14.4, 15.3,
16.2, 17.1, 18. , 18.9, 19.8, 20.7, 21.6, 22.5, 23.4,
24.3, 25.2, 26.1, 27. , 27.9, 28.8, 29.7])

The operation (+, -, *, /, ...) is per-
formed on each element of the ar-
ray

array <op> array:
>>> b = np.arange(10., 0, -0.3)
>>> b
array([10. , 9.7, 9.4, 9.1, 8.8, 8.5, 8.2, 7.9, 7.6,

7.3, 7. , 6.7, 6.4, 6.1, 5.8, 5.5, 5.2, 4.9,
4.6, 4.3, 4. , 3.7, 3.4, 3.1, 2.8, 2.5, 2.2,
1.9, 1.6, 1.3, 1. , 0.7, 0.4, 0.1])

>>> a+b
array([10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,

10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,
10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,
10.])

The operation is performed ele-
ment by element. The operands
must be of the same size and
shape

Dot product (
∑

aibi):
>>> np.dot(a,b)
555.38999999999726

Vector product:
>>> prod = np.outer(a,b)
>>> prod.shape
(34, 34)

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Simple array operations
package: numpy - 7

array <op> scalar:
>>> a = np.arange(0., 10, 0.3)
>>> a
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3. ,

3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.4, 5.7, 6. , 6.3,
6.6, 6.9, 7.2, 7.5, 7.8, 8.1, 8.4, 8.7, 9. , 9.3, 9.6,
9.9])

>>> a*3
array([0. , 0.9, 1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2,

8.1, 9. , 9.9, 10.8, 11.7, 12.6, 13.5, 14.4, 15.3,
16.2, 17.1, 18. , 18.9, 19.8, 20.7, 21.6, 22.5, 23.4,
24.3, 25.2, 26.1, 27. , 27.9, 28.8, 29.7])

The operation (+, -, *, /, ...) is per-
formed on each element of the ar-
ray

array <op> array:
>>> b = np.arange(10., 0, -0.3)
>>> b
array([10. , 9.7, 9.4, 9.1, 8.8, 8.5, 8.2, 7.9, 7.6,

7.3, 7. , 6.7, 6.4, 6.1, 5.8, 5.5, 5.2, 4.9,
4.6, 4.3, 4. , 3.7, 3.4, 3.1, 2.8, 2.5, 2.2,
1.9, 1.6, 1.3, 1. , 0.7, 0.4, 0.1])

>>> a+b
array([10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,

10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,
10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10.,
10.])

The operation is performed ele-
ment by element. The operands
must be of the same size and
shape

Dot product (
∑

aibi):
>>> np.dot(a,b)
555.38999999999726

Vector product:
>>> prod = np.outer(a,b)
>>> prod.shape
(34, 34)

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Function operating on arrays
package: numpy - 8

All functions defined in numpy operate
usually element by element

Trigonometric functions

Hyperbolic functions
Rounding (round(), floor(), ceil(), ...)
Sum, product, difference, division
Exponential, logarithms, bessel
functions
Floating point functions
Arithmetic functions
Complex functions

Beware of function name conflicts:
>>> import numpy as np
>>> a=np.array([[1,2,3],[4,5,6]])
>>> max(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
>>> np.max(a)
6
>>>

The error comes out because
we tried to use the python stan-
dard function max() on an array
object.

⇐
The function to use to find the maxi-
mum value in an array is np.max()

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Function operating on arrays
package: numpy - 8

All functions defined in numpy operate
usually element by element

Trigonometric functions
Hyperbolic functions

Rounding (round(), floor(), ceil(), ...)
Sum, product, difference, division
Exponential, logarithms, bessel
functions
Floating point functions
Arithmetic functions
Complex functions

Beware of function name conflicts:
>>> import numpy as np
>>> a=np.array([[1,2,3],[4,5,6]])
>>> max(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
>>> np.max(a)
6
>>>

The error comes out because
we tried to use the python stan-
dard function max() on an array
object.

⇐
The function to use to find the maxi-
mum value in an array is np.max()

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Function operating on arrays
package: numpy - 8

All functions defined in numpy operate
usually element by element

Trigonometric functions
Hyperbolic functions
Rounding (round(), floor(), ceil(), ...)

Sum, product, difference, division
Exponential, logarithms, bessel
functions
Floating point functions
Arithmetic functions
Complex functions

Beware of function name conflicts:
>>> import numpy as np
>>> a=np.array([[1,2,3],[4,5,6]])
>>> max(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
>>> np.max(a)
6
>>>

The error comes out because
we tried to use the python stan-
dard function max() on an array
object.

⇐
The function to use to find the maxi-
mum value in an array is np.max()

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Function operating on arrays
package: numpy - 8

All functions defined in numpy operate
usually element by element

Trigonometric functions
Hyperbolic functions
Rounding (round(), floor(), ceil(), ...)
Sum, product, difference, division

Exponential, logarithms, bessel
functions
Floating point functions
Arithmetic functions
Complex functions

Beware of function name conflicts:
>>> import numpy as np
>>> a=np.array([[1,2,3],[4,5,6]])
>>> max(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
>>> np.max(a)
6
>>>

The error comes out because
we tried to use the python stan-
dard function max() on an array
object.

⇐
The function to use to find the maxi-
mum value in an array is np.max()

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Function operating on arrays
package: numpy - 8

All functions defined in numpy operate
usually element by element

Trigonometric functions
Hyperbolic functions
Rounding (round(), floor(), ceil(), ...)
Sum, product, difference, division
Exponential, logarithms, bessel
functions

Floating point functions
Arithmetic functions
Complex functions

Beware of function name conflicts:
>>> import numpy as np
>>> a=np.array([[1,2,3],[4,5,6]])
>>> max(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
>>> np.max(a)
6
>>>

The error comes out because
we tried to use the python stan-
dard function max() on an array
object.

⇐
The function to use to find the maxi-
mum value in an array is np.max()

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Function operating on arrays
package: numpy - 8

All functions defined in numpy operate
usually element by element

Trigonometric functions
Hyperbolic functions
Rounding (round(), floor(), ceil(), ...)
Sum, product, difference, division
Exponential, logarithms, bessel
functions
Floating point functions

Arithmetic functions
Complex functions

Beware of function name conflicts:
>>> import numpy as np
>>> a=np.array([[1,2,3],[4,5,6]])
>>> max(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
>>> np.max(a)
6
>>>

The error comes out because
we tried to use the python stan-
dard function max() on an array
object.

⇐
The function to use to find the maxi-
mum value in an array is np.max()

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Function operating on arrays
package: numpy - 8

All functions defined in numpy operate
usually element by element

Trigonometric functions
Hyperbolic functions
Rounding (round(), floor(), ceil(), ...)
Sum, product, difference, division
Exponential, logarithms, bessel
functions
Floating point functions
Arithmetic functions

Complex functions

Beware of function name conflicts:
>>> import numpy as np
>>> a=np.array([[1,2,3],[4,5,6]])
>>> max(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
>>> np.max(a)
6
>>>

The error comes out because
we tried to use the python stan-
dard function max() on an array
object.

⇐
The function to use to find the maxi-
mum value in an array is np.max()

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Function operating on arrays
package: numpy - 8

All functions defined in numpy operate
usually element by element

Trigonometric functions
Hyperbolic functions
Rounding (round(), floor(), ceil(), ...)
Sum, product, difference, division
Exponential, logarithms, bessel
functions
Floating point functions
Arithmetic functions
Complex functions

Beware of function name conflicts:
>>> import numpy as np
>>> a=np.array([[1,2,3],[4,5,6]])
>>> max(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
>>> np.max(a)
6
>>>

The error comes out because
we tried to use the python stan-
dard function max() on an array
object.

⇐
The function to use to find the maxi-
mum value in an array is np.max()

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Function operating on arrays
package: numpy - 8

All functions defined in numpy operate
usually element by element

Trigonometric functions
Hyperbolic functions
Rounding (round(), floor(), ceil(), ...)
Sum, product, difference, division
Exponential, logarithms, bessel
functions
Floating point functions
Arithmetic functions
Complex functions

Beware of function name conflicts:
>>> import numpy as np
>>> a=np.array([[1,2,3],[4,5,6]])
>>> max(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
>>> np.max(a)
6
>>>

The error comes out because
we tried to use the python stan-
dard function max() on an array
object.

⇐
The function to use to find the maxi-
mum value in an array is np.max()

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Function operating on arrays
package: numpy - 8

All functions defined in numpy operate
usually element by element

Trigonometric functions
Hyperbolic functions
Rounding (round(), floor(), ceil(), ...)
Sum, product, difference, division
Exponential, logarithms, bessel
functions
Floating point functions
Arithmetic functions
Complex functions

Beware of function name conflicts:
>>> import numpy as np
>>> a=np.array([[1,2,3],[4,5,6]])
>>> max(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
>>> np.max(a)
6
>>>

The error comes out because
we tried to use the python stan-
dard function max() on an array
object.

⇐
The function to use to find the maxi-
mum value in an array is np.max()

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Function operating on arrays
package: numpy - 8

All functions defined in numpy operate
usually element by element

Trigonometric functions
Hyperbolic functions
Rounding (round(), floor(), ceil(), ...)
Sum, product, difference, division
Exponential, logarithms, bessel
functions
Floating point functions
Arithmetic functions
Complex functions

Beware of function name conflicts:
>>> import numpy as np
>>> a=np.array([[1,2,3],[4,5,6]])
>>> max(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
>>> np.max(a)
6
>>>

The error comes out because
we tried to use the python stan-
dard function max() on an array
object.

⇐
The function to use to find the maxi-
mum value in an array is np.max()

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Function operating on arrays
package: numpy - 8

All functions defined in numpy operate
usually element by element

Trigonometric functions
Hyperbolic functions
Rounding (round(), floor(), ceil(), ...)
Sum, product, difference, division
Exponential, logarithms, bessel
functions
Floating point functions
Arithmetic functions
Complex functions

Beware of function name conflicts:
>>> import numpy as np
>>> a=np.array([[1,2,3],[4,5,6]])
>>> max(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
>>> np.max(a)
6
>>>

The error comes out because
we tried to use the python stan-
dard function max() on an array
object.

⇐
The function to use to find the maxi-
mum value in an array is np.max()

→
Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

numpy: sub-modules
package: numpy - 9

Let’s have a look to some numpy
sub-modules by means of the manual:

numpy.ma: Operations on “masked”
arrays.

numpy.linalg: Linear algebra
algorithms.
numpy.matlib: Matrix operations
numpy.random: Random numbers and
distributions
numpy.fft: Discrete Fourier transforms

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-numpy-doc/html/reference/maskedarray.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.linalg.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.matlib.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.random.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.fft.html

numpy: sub-modules
package: numpy - 9

Let’s have a look to some numpy
sub-modules by means of the manual:

numpy.ma: Operations on “masked”
arrays.
numpy.linalg: Linear algebra
algorithms.

numpy.matlib: Matrix operations
numpy.random: Random numbers and
distributions
numpy.fft: Discrete Fourier transforms

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-numpy-doc/html/reference/maskedarray.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.linalg.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.matlib.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.random.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.fft.html

numpy: sub-modules
package: numpy - 9

Let’s have a look to some numpy
sub-modules by means of the manual:

numpy.ma: Operations on “masked”
arrays.
numpy.linalg: Linear algebra
algorithms.
numpy.matlib: Matrix operations

numpy.random: Random numbers and
distributions
numpy.fft: Discrete Fourier transforms

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-numpy-doc/html/reference/maskedarray.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.linalg.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.matlib.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.random.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.fft.html

numpy: sub-modules
package: numpy - 9

Let’s have a look to some numpy
sub-modules by means of the manual:

numpy.ma: Operations on “masked”
arrays.
numpy.linalg: Linear algebra
algorithms.
numpy.matlib: Matrix operations
numpy.random: Random numbers and
distributions

numpy.fft: Discrete Fourier transforms

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-numpy-doc/html/reference/maskedarray.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.linalg.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.matlib.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.random.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.fft.html

numpy: sub-modules
package: numpy - 9

Let’s have a look to some numpy
sub-modules by means of the manual:

numpy.ma: Operations on “masked”
arrays.
numpy.linalg: Linear algebra
algorithms.
numpy.matlib: Matrix operations
numpy.random: Random numbers and
distributions
numpy.fft: Discrete Fourier transforms

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-numpy-doc/html/reference/maskedarray.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.linalg.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.matlib.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.random.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.fft.html

numpy: sub-modules
package: numpy - 9

Let’s have a look to some numpy
sub-modules by means of the manual:

numpy.ma: Operations on “masked”
arrays.
numpy.linalg: Linear algebra
algorithms.
numpy.matlib: Matrix operations
numpy.random: Random numbers and
distributions
numpy.fft: Discrete Fourier transforms

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-numpy-doc/html/reference/maskedarray.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.linalg.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.matlib.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.random.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.fft.html

numpy: sub-modules
package: numpy - 9

Let’s have a look to some numpy
sub-modules by means of the manual:

numpy.ma: Operations on “masked”
arrays.
numpy.linalg: Linear algebra
algorithms.
numpy.matlib: Matrix operations
numpy.random: Random numbers and
distributions
numpy.fft: Discrete Fourier transforms

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-numpy-doc/html/reference/maskedarray.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.linalg.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.matlib.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.random.html
file:///usr/share/doc/python-numpy-doc/html/reference/routines.fft.html

Using numpy - 1
hands on 1 - 10

Problem: Verify whether there is significant
correlation between number of births and moon
phase.

Input data: Number of births for each day from
6/1/1978 to 11/15/1986 (From the civil registry of
Firenze).

file: dati nascite.dat
791124 0 0 0
791125 0 1 1
791126 0 0 0
.....

A file 3090 lines long, each line contains date, number of
males, number of females, total number of births.

In the following slide we’ll see how to set up a few useful
tools (functions) and then we’ll try to provide an answer.

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 1
hands on 1 - 10

Problem: Verify whether there is significant
correlation between number of births and moon
phase.

Input data: Number of births for each day from
6/1/1978 to 11/15/1986 (From the civil registry of
Firenze).

file: dati nascite.dat
791124 0 0 0
791125 0 1 1
791126 0 0 0
.....

A file 3090 lines long, each line contains date, number of
males, number of females, total number of births.

In the following slide we’ll see how to set up a few useful
tools (functions) and then we’ll try to provide an answer.

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 1
hands on 1 - 10

Problem: Verify whether there is significant
correlation between number of births and moon
phase.

Input data: Number of births for each day from
6/1/1978 to 11/15/1986 (From the civil registry of
Firenze).

file: dati nascite.dat
791124 0 0 0
791125 0 1 1
791126 0 0 0
.....

A file 3090 lines long, each line contains date, number of
males, number of females, total number of births.

In the following slide we’ll see how to set up a few useful
tools (functions) and then we’ll try to provide an answer.

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 1
hands on 1 - 10

Problem: Verify whether there is significant
correlation between number of births and moon
phase.

Input data: Number of births for each day from
6/1/1978 to 11/15/1986 (From the civil registry of
Firenze).

file: dati nascite.dat
791124 0 0 0
791125 0 1 1
791126 0 0 0
.....

A file 3090 lines long, each line contains date, number of
males, number of females, total number of births.

In the following slide we’ll see how to set up a few useful
tools (functions) and then we’ll try to provide an answer.

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 1
hands on 1 - 10

Problem: Verify whether there is significant
correlation between number of births and moon
phase.

Input data: Number of births for each day from
6/1/1978 to 11/15/1986 (From the civil registry of
Firenze).

file: dati nascite.dat
791124 0 0 0
791125 0 1 1
791126 0 0 0
.....

A file 3090 lines long, each line contains date, number of
males, number of females, total number of births.

In the following slide we’ll see how to set up a few useful
tools (functions) and then we’ll try to provide an answer.

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 2
hands on 1 - 11

file: moon.py
import math

Mean moon month: 29 days, 12 hours, 43 minutes, 11 seconds
MOON_MONTH = 29*86400 + 12*3600 + 43*60 + 11 # seconds
MOON_QUARTER = MOON_MONTH*0.25 # Duration of a moon quarter

First new moon after 1/1/1970
NEW_MOON_1 = 660262.0 # seconds
MOON_ZERO = NEW_MOON_1 - MOON_QUARTER*0.5

def moon_phase(nsec): # Moon phase at given time
0: new, 1:first quarter, 2:full, 3:last quarter

phase_sec = math.fmod(nsec-MOON_ZERO, MOON_MONTH)
phase = int(phase_sec/MOON_QUARTER)
return phase

Notes:

For time related computations we use the standard
time module. It’s base time reference is the number of
seconds since 1/1/1970 00:00 (sec70, in the following).
The value NEW MOON 1 was found from a table selecting
a “convenient” date and converting into sec70.
The value MOON ZERO is set at half a moon quarter
before new moon so that we have four interval centered
around the start of each quarter (see figure below).

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 2
hands on 1 - 11

file: moon.py
import math

Mean moon month: 29 days, 12 hours, 43 minutes, 11 seconds
MOON_MONTH = 29*86400 + 12*3600 + 43*60 + 11 # seconds
MOON_QUARTER = MOON_MONTH*0.25 # Duration of a moon quarter

First new moon after 1/1/1970
NEW_MOON_1 = 660262.0 # seconds
MOON_ZERO = NEW_MOON_1 - MOON_QUARTER*0.5

def moon_phase(nsec): # Moon phase at given time
0: new, 1:first quarter, 2:full, 3:last quarter

phase_sec = math.fmod(nsec-MOON_ZERO, MOON_MONTH)
phase = int(phase_sec/MOON_QUARTER)
return phase

Notes:
For time related computations we use the standard
time module. It’s base time reference is the number of
seconds since 1/1/1970 00:00 (sec70, in the following).

The value NEW MOON 1 was found from a table selecting
a “convenient” date and converting into sec70.
The value MOON ZERO is set at half a moon quarter
before new moon so that we have four interval centered
around the start of each quarter (see figure below).

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 2
hands on 1 - 11

file: moon.py
import math

Mean moon month: 29 days, 12 hours, 43 minutes, 11 seconds
MOON_MONTH = 29*86400 + 12*3600 + 43*60 + 11 # seconds
MOON_QUARTER = MOON_MONTH*0.25 # Duration of a moon quarter

First new moon after 1/1/1970
NEW_MOON_1 = 660262.0 # seconds
MOON_ZERO = NEW_MOON_1 - MOON_QUARTER*0.5

def moon_phase(nsec): # Moon phase at given time
0: new, 1:first quarter, 2:full, 3:last quarter

phase_sec = math.fmod(nsec-MOON_ZERO, MOON_MONTH)
phase = int(phase_sec/MOON_QUARTER)
return phase

Notes:
For time related computations we use the standard
time module. It’s base time reference is the number of
seconds since 1/1/1970 00:00 (sec70, in the following).
The value NEW MOON 1 was found from a table selecting
a “convenient” date and converting into sec70.

The value MOON ZERO is set at half a moon quarter
before new moon so that we have four interval centered
around the start of each quarter (see figure below).

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 2
hands on 1 - 11

file: moon.py
import math

Mean moon month: 29 days, 12 hours, 43 minutes, 11 seconds
MOON_MONTH = 29*86400 + 12*3600 + 43*60 + 11 # seconds
MOON_QUARTER = MOON_MONTH*0.25 # Duration of a moon quarter

First new moon after 1/1/1970
NEW_MOON_1 = 660262.0 # seconds
MOON_ZERO = NEW_MOON_1 - MOON_QUARTER*0.5

def moon_phase(nsec): # Moon phase at given time
0: new, 1:first quarter, 2:full, 3:last quarter

phase_sec = math.fmod(nsec-MOON_ZERO, MOON_MONTH)
phase = int(phase_sec/MOON_QUARTER)
return phase

Notes:
For time related computations we use the standard
time module. It’s base time reference is the number of
seconds since 1/1/1970 00:00 (sec70, in the following).
The value NEW MOON 1 was found from a table selecting
a “convenient” date and converting into sec70.
The value MOON ZERO is set at half a moon quarter
before new moon so that we have four interval centered
around the start of each quarter (see figure below).

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 2
hands on 1 - 11

file: moon.py
import math

Mean moon month: 29 days, 12 hours, 43 minutes, 11 seconds
MOON_MONTH = 29*86400 + 12*3600 + 43*60 + 11 # seconds
MOON_QUARTER = MOON_MONTH*0.25 # Duration of a moon quarter

First new moon after 1/1/1970
NEW_MOON_1 = 660262.0 # seconds
MOON_ZERO = NEW_MOON_1 - MOON_QUARTER*0.5

def moon_phase(nsec): # Moon phase at given time
0: new, 1:first quarter, 2:full, 3:last quarter

phase_sec = math.fmod(nsec-MOON_ZERO, MOON_MONTH)
phase = int(phase_sec/MOON_QUARTER)
return phase

Notes:
For time related computations we use the standard
time module. It’s base time reference is the number of
seconds since 1/1/1970 00:00 (sec70, in the following).
The value NEW MOON 1 was found from a table selecting
a “convenient” date and converting into sec70.
The value MOON ZERO is set at half a moon quarter
before new moon so that we have four interval centered
around the start of each quarter (see figure below).

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 2
hands on 1 - 11

file: moon.py
import math

Mean moon month: 29 days, 12 hours, 43 minutes, 11 seconds
MOON_MONTH = 29*86400 + 12*3600 + 43*60 + 11 # seconds
MOON_QUARTER = MOON_MONTH*0.25 # Duration of a moon quarter

First new moon after 1/1/1970
NEW_MOON_1 = 660262.0 # seconds
MOON_ZERO = NEW_MOON_1 - MOON_QUARTER*0.5

def moon_phase(nsec): # Moon phase at given time
0: new, 1:first quarter, 2:full, 3:last quarter

phase_sec = math.fmod(nsec-MOON_ZERO, MOON_MONTH)
phase = int(phase_sec/MOON_QUARTER)
return phase

Notes:
For time related computations we use the standard
time module. It’s base time reference is the number of
seconds since 1/1/1970 00:00 (sec70, in the following).
The value NEW MOON 1 was found from a table selecting
a “convenient” date and converting into sec70.
The value MOON ZERO is set at half a moon quarter
before new moon so that we have four interval centered
around the start of each quarter (see figure below).

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 3
hands on 1 - 12

file: tt.py
import time

def toseconds(aammgg): # Converts date "yymmdd" into sec70 (at noon)
year = int(aammgg[:2])+1900
month = int(aammgg[2:4])
day = int(aammgg[4:6])
tt = (year, month, day, 12, 0, 0, 0, 0, 0)
return time.mktime(tt)

⇐ see: time.mktime

... let’s go on with ipython:
In [1]: import tt, moon
In [2]: filename = "dati_nascite.dat"
In [3]: data = np.loadtxt(filename, dtype=np.int_,
...: converters={0: tt.toseconds}, unpack=True)

In [4]: cvt_moon = np.vectorize(moon.moon_phase)
In [5]: moonphase = cvt_moon(data[0])

In [6]: m0 = np.array([1 if x==0 else 0 for x in moonphase])
In [7]: m1 = np.array([1 if x==1 else 0 for x in moonphase])
In [8]: m2 = np.array([1 if x==2 else 0 for x in moonphase])
In [9]: m3 = np.array([1 if x==3 else 0 for x in moonphase])

In [10]: births0 = np.dot(m0,data[3])
In [11]: births1 = np.dot(m1,data[3])
In [12]: births2 = np.dot(m2,data[3])
In [13]: births3 = np.dot(m3,data[3])

In [14]: births = births0+births1+births2+births3
In [15]: births_dd = births/len(moonphase)

In [16]: n_births = [births0, births1, births2, births3]
In [17]: n_expect = [np.sum(m0)*births_dd, np.sum(m1)*births_dd,
...: np.sum(m2)*births_dd, np.sum(m3)*births_dd]

⇐

see: np.loadtxt
→ converters
→ unpack

⇐see: np.vectorize

m0 has ones in dates when
moon phase is 0, m1 in
dates when moon phase is
1, etc.

births0 is the total num-
ber of births in dates when
moon phase is 0, etc.

Measured and expected
number of births in the four
moon phases

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python3.6/html/library/time.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.loadtxt.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.vectorize.html

Using numpy - 3
hands on 1 - 12

file: tt.py
import time

def toseconds(aammgg): # Converts date "yymmdd" into sec70 (at noon)
year = int(aammgg[:2])+1900
month = int(aammgg[2:4])
day = int(aammgg[4:6])
tt = (year, month, day, 12, 0, 0, 0, 0, 0)
return time.mktime(tt) ⇐ see: time.mktime

... let’s go on with ipython:
In [1]: import tt, moon
In [2]: filename = "dati_nascite.dat"
In [3]: data = np.loadtxt(filename, dtype=np.int_,
...: converters={0: tt.toseconds}, unpack=True)

In [4]: cvt_moon = np.vectorize(moon.moon_phase)
In [5]: moonphase = cvt_moon(data[0])

In [6]: m0 = np.array([1 if x==0 else 0 for x in moonphase])
In [7]: m1 = np.array([1 if x==1 else 0 for x in moonphase])
In [8]: m2 = np.array([1 if x==2 else 0 for x in moonphase])
In [9]: m3 = np.array([1 if x==3 else 0 for x in moonphase])

In [10]: births0 = np.dot(m0,data[3])
In [11]: births1 = np.dot(m1,data[3])
In [12]: births2 = np.dot(m2,data[3])
In [13]: births3 = np.dot(m3,data[3])

In [14]: births = births0+births1+births2+births3
In [15]: births_dd = births/len(moonphase)

In [16]: n_births = [births0, births1, births2, births3]
In [17]: n_expect = [np.sum(m0)*births_dd, np.sum(m1)*births_dd,
...: np.sum(m2)*births_dd, np.sum(m3)*births_dd]

⇐

see: np.loadtxt
→ converters
→ unpack

⇐see: np.vectorize

m0 has ones in dates when
moon phase is 0, m1 in
dates when moon phase is
1, etc.

births0 is the total num-
ber of births in dates when
moon phase is 0, etc.

Measured and expected
number of births in the four
moon phases

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python3.6/html/library/time.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.loadtxt.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.vectorize.html

Using numpy - 3
hands on 1 - 12

file: tt.py
import time

def toseconds(aammgg): # Converts date "yymmdd" into sec70 (at noon)
year = int(aammgg[:2])+1900
month = int(aammgg[2:4])
day = int(aammgg[4:6])
tt = (year, month, day, 12, 0, 0, 0, 0, 0)
return time.mktime(tt) ⇐ see: time.mktime

... let’s go on with ipython:
In [1]: import tt, moon
In [2]: filename = "dati_nascite.dat"
In [3]: data = np.loadtxt(filename, dtype=np.int_,
...: converters={0: tt.toseconds}, unpack=True)

In [4]: cvt_moon = np.vectorize(moon.moon_phase)
In [5]: moonphase = cvt_moon(data[0])

In [6]: m0 = np.array([1 if x==0 else 0 for x in moonphase])
In [7]: m1 = np.array([1 if x==1 else 0 for x in moonphase])
In [8]: m2 = np.array([1 if x==2 else 0 for x in moonphase])
In [9]: m3 = np.array([1 if x==3 else 0 for x in moonphase])

In [10]: births0 = np.dot(m0,data[3])
In [11]: births1 = np.dot(m1,data[3])
In [12]: births2 = np.dot(m2,data[3])
In [13]: births3 = np.dot(m3,data[3])

In [14]: births = births0+births1+births2+births3
In [15]: births_dd = births/len(moonphase)

In [16]: n_births = [births0, births1, births2, births3]
In [17]: n_expect = [np.sum(m0)*births_dd, np.sum(m1)*births_dd,
...: np.sum(m2)*births_dd, np.sum(m3)*births_dd]

⇐

see: np.loadtxt
→ converters
→ unpack

⇐see: np.vectorize

m0 has ones in dates when
moon phase is 0, m1 in
dates when moon phase is
1, etc.

births0 is the total num-
ber of births in dates when
moon phase is 0, etc.

Measured and expected
number of births in the four
moon phases

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python3.6/html/library/time.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.loadtxt.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.vectorize.html

Using numpy - 3
hands on 1 - 12

file: tt.py
import time

def toseconds(aammgg): # Converts date "yymmdd" into sec70 (at noon)
year = int(aammgg[:2])+1900
month = int(aammgg[2:4])
day = int(aammgg[4:6])
tt = (year, month, day, 12, 0, 0, 0, 0, 0)
return time.mktime(tt) ⇐ see: time.mktime

... let’s go on with ipython:
In [1]: import tt, moon
In [2]: filename = "dati_nascite.dat"
In [3]: data = np.loadtxt(filename, dtype=np.int_,
...: converters={0: tt.toseconds}, unpack=True)

In [4]: cvt_moon = np.vectorize(moon.moon_phase)
In [5]: moonphase = cvt_moon(data[0])

In [6]: m0 = np.array([1 if x==0 else 0 for x in moonphase])
In [7]: m1 = np.array([1 if x==1 else 0 for x in moonphase])
In [8]: m2 = np.array([1 if x==2 else 0 for x in moonphase])
In [9]: m3 = np.array([1 if x==3 else 0 for x in moonphase])

In [10]: births0 = np.dot(m0,data[3])
In [11]: births1 = np.dot(m1,data[3])
In [12]: births2 = np.dot(m2,data[3])
In [13]: births3 = np.dot(m3,data[3])

In [14]: births = births0+births1+births2+births3
In [15]: births_dd = births/len(moonphase)

In [16]: n_births = [births0, births1, births2, births3]
In [17]: n_expect = [np.sum(m0)*births_dd, np.sum(m1)*births_dd,
...: np.sum(m2)*births_dd, np.sum(m3)*births_dd]

⇐

see: np.loadtxt
→ converters
→ unpack

⇐see: np.vectorize

m0 has ones in dates when
moon phase is 0, m1 in
dates when moon phase is
1, etc.

births0 is the total num-
ber of births in dates when
moon phase is 0, etc.

Measured and expected
number of births in the four
moon phases

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python3.6/html/library/time.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.loadtxt.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.vectorize.html

Using numpy - 3
hands on 1 - 12

file: tt.py
import time

def toseconds(aammgg): # Converts date "yymmdd" into sec70 (at noon)
year = int(aammgg[:2])+1900
month = int(aammgg[2:4])
day = int(aammgg[4:6])
tt = (year, month, day, 12, 0, 0, 0, 0, 0)
return time.mktime(tt) ⇐ see: time.mktime

... let’s go on with ipython:
In [1]: import tt, moon
In [2]: filename = "dati_nascite.dat"
In [3]: data = np.loadtxt(filename, dtype=np.int_,
...: converters={0: tt.toseconds}, unpack=True)

In [4]: cvt_moon = np.vectorize(moon.moon_phase)
In [5]: moonphase = cvt_moon(data[0])

In [6]: m0 = np.array([1 if x==0 else 0 for x in moonphase])
In [7]: m1 = np.array([1 if x==1 else 0 for x in moonphase])
In [8]: m2 = np.array([1 if x==2 else 0 for x in moonphase])
In [9]: m3 = np.array([1 if x==3 else 0 for x in moonphase])

In [10]: births0 = np.dot(m0,data[3])
In [11]: births1 = np.dot(m1,data[3])
In [12]: births2 = np.dot(m2,data[3])
In [13]: births3 = np.dot(m3,data[3])

In [14]: births = births0+births1+births2+births3
In [15]: births_dd = births/len(moonphase)

In [16]: n_births = [births0, births1, births2, births3]
In [17]: n_expect = [np.sum(m0)*births_dd, np.sum(m1)*births_dd,
...: np.sum(m2)*births_dd, np.sum(m3)*births_dd]

⇐

see: np.loadtxt
→ converters
→ unpack

⇐see: np.vectorize

m0 has ones in dates when
moon phase is 0, m1 in
dates when moon phase is
1, etc.

births0 is the total num-
ber of births in dates when
moon phase is 0, etc.

Measured and expected
number of births in the four
moon phases

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python3.6/html/library/time.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.loadtxt.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.vectorize.html

Using numpy - 3
hands on 1 - 12

file: tt.py
import time

def toseconds(aammgg): # Converts date "yymmdd" into sec70 (at noon)
year = int(aammgg[:2])+1900
month = int(aammgg[2:4])
day = int(aammgg[4:6])
tt = (year, month, day, 12, 0, 0, 0, 0, 0)
return time.mktime(tt) ⇐ see: time.mktime

... let’s go on with ipython:
In [1]: import tt, moon
In [2]: filename = "dati_nascite.dat"
In [3]: data = np.loadtxt(filename, dtype=np.int_,
...: converters={0: tt.toseconds}, unpack=True)

In [4]: cvt_moon = np.vectorize(moon.moon_phase)
In [5]: moonphase = cvt_moon(data[0])

In [6]: m0 = np.array([1 if x==0 else 0 for x in moonphase])
In [7]: m1 = np.array([1 if x==1 else 0 for x in moonphase])
In [8]: m2 = np.array([1 if x==2 else 0 for x in moonphase])
In [9]: m3 = np.array([1 if x==3 else 0 for x in moonphase])

In [10]: births0 = np.dot(m0,data[3])
In [11]: births1 = np.dot(m1,data[3])
In [12]: births2 = np.dot(m2,data[3])
In [13]: births3 = np.dot(m3,data[3])

In [14]: births = births0+births1+births2+births3
In [15]: births_dd = births/len(moonphase)

In [16]: n_births = [births0, births1, births2, births3]
In [17]: n_expect = [np.sum(m0)*births_dd, np.sum(m1)*births_dd,
...: np.sum(m2)*births_dd, np.sum(m3)*births_dd]

⇐

see: np.loadtxt
→ converters
→ unpack

⇐see: np.vectorize

m0 has ones in dates when
moon phase is 0, m1 in
dates when moon phase is
1, etc.

births0 is the total num-
ber of births in dates when
moon phase is 0, etc.

Measured and expected
number of births in the four
moon phases

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python3.6/html/library/time.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.loadtxt.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.vectorize.html

Using numpy - 3
hands on 1 - 12

file: tt.py
import time

def toseconds(aammgg): # Converts date "yymmdd" into sec70 (at noon)
year = int(aammgg[:2])+1900
month = int(aammgg[2:4])
day = int(aammgg[4:6])
tt = (year, month, day, 12, 0, 0, 0, 0, 0)
return time.mktime(tt) ⇐ see: time.mktime

... let’s go on with ipython:
In [1]: import tt, moon
In [2]: filename = "dati_nascite.dat"
In [3]: data = np.loadtxt(filename, dtype=np.int_,
...: converters={0: tt.toseconds}, unpack=True)

In [4]: cvt_moon = np.vectorize(moon.moon_phase)
In [5]: moonphase = cvt_moon(data[0])

In [6]: m0 = np.array([1 if x==0 else 0 for x in moonphase])
In [7]: m1 = np.array([1 if x==1 else 0 for x in moonphase])
In [8]: m2 = np.array([1 if x==2 else 0 for x in moonphase])
In [9]: m3 = np.array([1 if x==3 else 0 for x in moonphase])

In [10]: births0 = np.dot(m0,data[3])
In [11]: births1 = np.dot(m1,data[3])
In [12]: births2 = np.dot(m2,data[3])
In [13]: births3 = np.dot(m3,data[3])

In [14]: births = births0+births1+births2+births3
In [15]: births_dd = births/len(moonphase)

In [16]: n_births = [births0, births1, births2, births3]
In [17]: n_expect = [np.sum(m0)*births_dd, np.sum(m1)*births_dd,
...: np.sum(m2)*births_dd, np.sum(m3)*births_dd]

⇐

see: np.loadtxt
→ converters
→ unpack

⇐see: np.vectorize

m0 has ones in dates when
moon phase is 0, m1 in
dates when moon phase is
1, etc.

births0 is the total num-
ber of births in dates when
moon phase is 0, etc.

Measured and expected
number of births in the four
moon phases

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python3.6/html/library/time.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.loadtxt.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.vectorize.html

Using numpy - 3
hands on 1 - 12

file: tt.py
import time

def toseconds(aammgg): # Converts date "yymmdd" into sec70 (at noon)
year = int(aammgg[:2])+1900
month = int(aammgg[2:4])
day = int(aammgg[4:6])
tt = (year, month, day, 12, 0, 0, 0, 0, 0)
return time.mktime(tt) ⇐ see: time.mktime

... let’s go on with ipython:
In [1]: import tt, moon
In [2]: filename = "dati_nascite.dat"
In [3]: data = np.loadtxt(filename, dtype=np.int_,
...: converters={0: tt.toseconds}, unpack=True)

In [4]: cvt_moon = np.vectorize(moon.moon_phase)
In [5]: moonphase = cvt_moon(data[0])

In [6]: m0 = np.array([1 if x==0 else 0 for x in moonphase])
In [7]: m1 = np.array([1 if x==1 else 0 for x in moonphase])
In [8]: m2 = np.array([1 if x==2 else 0 for x in moonphase])
In [9]: m3 = np.array([1 if x==3 else 0 for x in moonphase])

In [10]: births0 = np.dot(m0,data[3])
In [11]: births1 = np.dot(m1,data[3])
In [12]: births2 = np.dot(m2,data[3])
In [13]: births3 = np.dot(m3,data[3])

In [14]: births = births0+births1+births2+births3
In [15]: births_dd = births/len(moonphase)

In [16]: n_births = [births0, births1, births2, births3]
In [17]: n_expect = [np.sum(m0)*births_dd, np.sum(m1)*births_dd,
...: np.sum(m2)*births_dd, np.sum(m3)*births_dd]

⇐

see: np.loadtxt
→ converters
→ unpack

⇐see: np.vectorize

m0 has ones in dates when
moon phase is 0, m1 in
dates when moon phase is
1, etc.

births0 is the total num-
ber of births in dates when
moon phase is 0, etc.

Measured and expected
number of births in the four
moon phases

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python3.6/html/library/time.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.loadtxt.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.vectorize.html

Using numpy - 3
hands on 1 - 12

file: tt.py
import time

def toseconds(aammgg): # Converts date "yymmdd" into sec70 (at noon)
year = int(aammgg[:2])+1900
month = int(aammgg[2:4])
day = int(aammgg[4:6])
tt = (year, month, day, 12, 0, 0, 0, 0, 0)
return time.mktime(tt) ⇐ see: time.mktime

... let’s go on with ipython:
In [1]: import tt, moon
In [2]: filename = "dati_nascite.dat"
In [3]: data = np.loadtxt(filename, dtype=np.int_,
...: converters={0: tt.toseconds}, unpack=True)

In [4]: cvt_moon = np.vectorize(moon.moon_phase)
In [5]: moonphase = cvt_moon(data[0])

In [6]: m0 = np.array([1 if x==0 else 0 for x in moonphase])
In [7]: m1 = np.array([1 if x==1 else 0 for x in moonphase])
In [8]: m2 = np.array([1 if x==2 else 0 for x in moonphase])
In [9]: m3 = np.array([1 if x==3 else 0 for x in moonphase])

In [10]: births0 = np.dot(m0,data[3])
In [11]: births1 = np.dot(m1,data[3])
In [12]: births2 = np.dot(m2,data[3])
In [13]: births3 = np.dot(m3,data[3])

In [14]: births = births0+births1+births2+births3
In [15]: births_dd = births/len(moonphase)

In [16]: n_births = [births0, births1, births2, births3]
In [17]: n_expect = [np.sum(m0)*births_dd, np.sum(m1)*births_dd,
...: np.sum(m2)*births_dd, np.sum(m3)*births_dd]

⇐

see: np.loadtxt
→ converters
→ unpack

⇐see: np.vectorize

m0 has ones in dates when
moon phase is 0, m1 in
dates when moon phase is
1, etc.

births0 is the total num-
ber of births in dates when
moon phase is 0, etc.

Measured and expected
number of births in the four
moon phases

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python3.6/html/library/time.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.loadtxt.html
file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.vectorize.html

Using numpy - 4
hands on 1 - 13

Here are the instructions shown in the previous
slide, gathered into a file.

file: births.py
import numpy as np
import tt, moon

filename = "dati_nascite.dat"
data = np.loadtxt(filename, dtype=np.int_,

converters={0: tt.toseconds}, unpack=True)

cvt_moon = np.vectorize(moon.moon_phase)
moonphase = cvt_moon(data[0])

m0 = np.array([1 if x==0 else 0 for x in moonphase])
m1 = np.array([1 if x==1 else 0 for x in moonphase])
m2 = np.array([1 if x==2 else 0 for x in moonphase])
m3 = np.array([1 if x==3 else 0 for x in moonphase])

births0 = np.dot(m0,data[3])
births1 = np.dot(m1,data[3])
births2 = np.dot(m2,data[3])
births3 = np.dot(m3,data[3])

births = births0+births1+births2+births3

f_births = np.array([births0,births1,births2,births3])/births
f_expect = np.array([np.sum(m0),np.sum(m1),np.sum(m2),np.sum(m3)])/len(moonphase)

chi_sq = sum([(x-y)**2/y for (x,y) in zip(f_births, f_expect)])

We also compute the expected
and observed frequencies of
births and the χ2 statistics

⇑
The zip() function converts two lists:
[a0, a1, a2, ...], [b0, b1, b2, ...]
into a list of two element tuples:
[(a0, b0), (a1, b1), (a2, b2), ...]

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 4
hands on 1 - 13

Here are the instructions shown in the previous
slide, gathered into a file.

file: births.py
import numpy as np
import tt, moon

filename = "dati_nascite.dat"
data = np.loadtxt(filename, dtype=np.int_,

converters={0: tt.toseconds}, unpack=True)

cvt_moon = np.vectorize(moon.moon_phase)
moonphase = cvt_moon(data[0])

m0 = np.array([1 if x==0 else 0 for x in moonphase])
m1 = np.array([1 if x==1 else 0 for x in moonphase])
m2 = np.array([1 if x==2 else 0 for x in moonphase])
m3 = np.array([1 if x==3 else 0 for x in moonphase])

births0 = np.dot(m0,data[3])
births1 = np.dot(m1,data[3])
births2 = np.dot(m2,data[3])
births3 = np.dot(m3,data[3])

births = births0+births1+births2+births3

f_births = np.array([births0,births1,births2,births3])/births
f_expect = np.array([np.sum(m0),np.sum(m1),np.sum(m2),np.sum(m3)])/len(moonphase)

chi_sq = sum([(x-y)**2/y for (x,y) in zip(f_births, f_expect)])

We also compute the expected
and observed frequencies of
births and the χ2 statistics

⇑
The zip() function converts two lists:
[a0, a1, a2, ...], [b0, b1, b2, ...]
into a list of two element tuples:
[(a0, b0), (a1, b1), (a2, b2), ...]

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 4
hands on 1 - 13

Here are the instructions shown in the previous
slide, gathered into a file.

file: births.py
import numpy as np
import tt, moon

filename = "dati_nascite.dat"
data = np.loadtxt(filename, dtype=np.int_,

converters={0: tt.toseconds}, unpack=True)

cvt_moon = np.vectorize(moon.moon_phase)
moonphase = cvt_moon(data[0])

m0 = np.array([1 if x==0 else 0 for x in moonphase])
m1 = np.array([1 if x==1 else 0 for x in moonphase])
m2 = np.array([1 if x==2 else 0 for x in moonphase])
m3 = np.array([1 if x==3 else 0 for x in moonphase])

births0 = np.dot(m0,data[3])
births1 = np.dot(m1,data[3])
births2 = np.dot(m2,data[3])
births3 = np.dot(m3,data[3])

births = births0+births1+births2+births3

f_births = np.array([births0,births1,births2,births3])/births
f_expect = np.array([np.sum(m0),np.sum(m1),np.sum(m2),np.sum(m3)])/len(moonphase)

chi_sq = sum([(x-y)**2/y for (x,y) in zip(f_births, f_expect)])

We also compute the expected
and observed frequencies of
births and the χ2 statistics

⇑
The zip() function converts two lists:
[a0, a1, a2, ...], [b0, b1, b2, ...]
into a list of two element tuples:
[(a0, b0), (a1, b1), (a2, b2), ...]

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 5
hands on 1 - 14

Let’s proceed with ipython:
$ ipython --pylab
....
In [1]: %run births.py

In [2]: plt.bar(np.arange(0.6, 4.5, 1), f_births, width=0.4, color="blue")

In [3]: plt.bar(np.arange(1, 4.5, 1), f_expect, width=0.4, color="green")

⇐

The magic command %run executes
the content of file births.py in the
ipython environment, as if lines were
written at the prompt

Let’s plot observed (blue) and
expected (green) frequency of
births in each moon phase

Are differences meaningful?
In [5]: chi_sq
Out[5]: 0.00038396010576387837

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 5
hands on 1 - 14

Let’s proceed with ipython:
$ ipython --pylab
....
In [1]: %run births.py

In [2]: plt.bar(np.arange(0.6, 4.5, 1), f_births, width=0.4, color="blue")

In [3]: plt.bar(np.arange(1, 4.5, 1), f_expect, width=0.4, color="green")

⇐

The magic command %run executes
the content of file births.py in the
ipython environment, as if lines were
written at the prompt

Let’s plot observed (blue) and
expected (green) frequency of
births in each moon phase

Are differences meaningful?
In [5]: chi_sq
Out[5]: 0.00038396010576387837

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 5
hands on 1 - 14

Let’s proceed with ipython:
$ ipython --pylab
....
In [1]: %run births.py

In [2]: plt.bar(np.arange(0.6, 4.5, 1), f_births, width=0.4, color="blue")

In [3]: plt.bar(np.arange(1, 4.5, 1), f_expect, width=0.4, color="green")

⇐

The magic command %run executes
the content of file births.py in the
ipython environment, as if lines were
written at the prompt

Let’s plot observed (blue) and
expected (green) frequency of
births in each moon phase

Are differences meaningful?
In [5]: chi_sq
Out[5]: 0.00038396010576387837

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 5
hands on 1 - 14

Let’s proceed with ipython:
$ ipython --pylab
....
In [1]: %run births.py

In [2]: plt.bar(np.arange(0.6, 4.5, 1), f_births, width=0.4, color="blue")

In [3]: plt.bar(np.arange(1, 4.5, 1), f_expect, width=0.4, color="green")

⇐

The magic command %run executes
the content of file births.py in the
ipython environment, as if lines were
written at the prompt

Let’s plot observed (blue) and
expected (green) frequency of
births in each moon phase

Are differences meaningful?
In [5]: chi_sq
Out[5]: 0.00038396010576387837

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

Using numpy - 5
hands on 1 - 14

Let’s proceed with ipython:
$ ipython --pylab
....
In [1]: %run births.py

In [2]: plt.bar(np.arange(0.6, 4.5, 1), f_births, width=0.4, color="blue")

In [3]: plt.bar(np.arange(1, 4.5, 1), f_expect, width=0.4, color="green")

⇐

The magic command %run executes
the content of file births.py in the
ipython environment, as if lines were
written at the prompt

Let’s plot observed (blue) and
expected (green) frequency of
births in each moon phase

Are differences meaningful?
In [5]: chi_sq
Out[5]: 0.00038396010576387837

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 1
package: matplotlib - 15

matplotlib is a graphic 2D package to be
used in python programs and particularly
suited for the ipython environment.

Generates “publication quality”
drawings

Can be used interactively
Modeled on the well know matlab
graphic commands
Simple to use with default setup
Every graphic details can be
individually controlled
Advanced use via OO interface
Provided with a 3d toolkit

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-matplotlib-doc/html/index.html

matplotlib - 1
package: matplotlib - 15

matplotlib is a graphic 2D package to be
used in python programs and particularly
suited for the ipython environment.

Generates “publication quality”
drawings
Can be used interactively

Modeled on the well know matlab
graphic commands
Simple to use with default setup
Every graphic details can be
individually controlled
Advanced use via OO interface
Provided with a 3d toolkit

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-matplotlib-doc/html/index.html

matplotlib - 1
package: matplotlib - 15

matplotlib is a graphic 2D package to be
used in python programs and particularly
suited for the ipython environment.

Generates “publication quality”
drawings
Can be used interactively
Modeled on the well know matlab
graphic commands

Simple to use with default setup
Every graphic details can be
individually controlled
Advanced use via OO interface
Provided with a 3d toolkit

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-matplotlib-doc/html/index.html

matplotlib - 1
package: matplotlib - 15

matplotlib is a graphic 2D package to be
used in python programs and particularly
suited for the ipython environment.

Generates “publication quality”
drawings
Can be used interactively
Modeled on the well know matlab
graphic commands
Simple to use with default setup

Every graphic details can be
individually controlled
Advanced use via OO interface
Provided with a 3d toolkit

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-matplotlib-doc/html/index.html

matplotlib - 1
package: matplotlib - 15

matplotlib is a graphic 2D package to be
used in python programs and particularly
suited for the ipython environment.

Generates “publication quality”
drawings
Can be used interactively
Modeled on the well know matlab
graphic commands
Simple to use with default setup
Every graphic details can be
individually controlled

Advanced use via OO interface
Provided with a 3d toolkit

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-matplotlib-doc/html/index.html

matplotlib - 1
package: matplotlib - 15

matplotlib is a graphic 2D package to be
used in python programs and particularly
suited for the ipython environment.

Generates “publication quality”
drawings
Can be used interactively
Modeled on the well know matlab
graphic commands
Simple to use with default setup
Every graphic details can be
individually controlled
Advanced use via OO interface

Provided with a 3d toolkit

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-matplotlib-doc/html/index.html

matplotlib - 1
package: matplotlib - 15

matplotlib is a graphic 2D package to be
used in python programs and particularly
suited for the ipython environment.

Generates “publication quality”
drawings
Can be used interactively
Modeled on the well know matlab
graphic commands
Simple to use with default setup
Every graphic details can be
individually controlled
Advanced use via OO interface
Provided with a 3d toolkit

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-matplotlib-doc/html/index.html

matplotlib - 1
package: matplotlib - 15

matplotlib is a graphic 2D package to be
used in python programs and particularly
suited for the ipython environment.

Generates “publication quality”
drawings
Can be used interactively
Modeled on the well know matlab
graphic commands
Simple to use with default setup
Every graphic details can be
individually controlled
Advanced use via OO interface
Provided with a 3d toolkit

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-matplotlib-doc/html/index.html

matplotlib - 1
package: matplotlib - 15

matplotlib is a graphic 2D package to be
used in python programs and particularly
suited for the ipython environment.

Generates “publication quality”
drawings
Can be used interactively
Modeled on the well know matlab
graphic commands
Simple to use with default setup
Every graphic details can be
individually controlled
Advanced use via OO interface
Provided with a 3d toolkit

→

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-matplotlib-doc/html/index.html

matplotlib - 3
hands on 2 - 16

matplotlib is well suited for ipython:
$ ipython --pylab
....
In [1]: %run births.py

In [2]: plt.plot(data[3])

In [3]: x = np.arange(len(data[3]))

In [4]: a,b = np.polyfit(x, data[3], 1)

In [5]: plt.plot((0, x[-1]),(b, a*x[-1]+b),linewidth=2,color="red")

In [6]: plt.title("Births trend")

⇐
Here we plot all the
data (with blue line)

⇐ See: np.polyfit

⇑
Here we plot the red line

↓↓↓↓↓↓

The plot aspect can be inter-
actively modified by means
of control buttons

←
The figure can be saved
to a file

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.polyfit.html

matplotlib - 3
hands on 2 - 16

matplotlib is well suited for ipython:
$ ipython --pylab
....
In [1]: %run births.py

In [2]: plt.plot(data[3])

In [3]: x = np.arange(len(data[3]))

In [4]: a,b = np.polyfit(x, data[3], 1)

In [5]: plt.plot((0, x[-1]),(b, a*x[-1]+b),linewidth=2,color="red")

In [6]: plt.title("Births trend")

⇐
Here we plot all the
data (with blue line)

⇐ See: np.polyfit

⇑
Here we plot the red line

↓↓↓↓↓↓

The plot aspect can be inter-
actively modified by means
of control buttons

←
The figure can be saved
to a file

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.polyfit.html

matplotlib - 3
hands on 2 - 16

matplotlib is well suited for ipython:
$ ipython --pylab
....
In [1]: %run births.py

In [2]: plt.plot(data[3])

In [3]: x = np.arange(len(data[3]))

In [4]: a,b = np.polyfit(x, data[3], 1)

In [5]: plt.plot((0, x[-1]),(b, a*x[-1]+b),linewidth=2,color="red")

In [6]: plt.title("Births trend")

⇐
Here we plot all the
data (with blue line)

⇐ See: np.polyfit

⇑
Here we plot the red line

↓↓↓↓↓↓

The plot aspect can be inter-
actively modified by means
of control buttons

←
The figure can be saved
to a file

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.polyfit.html

matplotlib - 3
hands on 2 - 16

matplotlib is well suited for ipython:
$ ipython --pylab
....
In [1]: %run births.py

In [2]: plt.plot(data[3])

In [3]: x = np.arange(len(data[3]))

In [4]: a,b = np.polyfit(x, data[3], 1)

In [5]: plt.plot((0, x[-1]),(b, a*x[-1]+b),linewidth=2,color="red")

In [6]: plt.title("Births trend")

⇐
Here we plot all the
data (with blue line)

⇐ See: np.polyfit

⇑
Here we plot the red line

↓↓↓↓↓↓

The plot aspect can be inter-
actively modified by means
of control buttons

←
The figure can be saved
to a file

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.polyfit.html

matplotlib - 3
hands on 2 - 16

matplotlib is well suited for ipython:
$ ipython --pylab
....
In [1]: %run births.py

In [2]: plt.plot(data[3])

In [3]: x = np.arange(len(data[3]))

In [4]: a,b = np.polyfit(x, data[3], 1)

In [5]: plt.plot((0, x[-1]),(b, a*x[-1]+b),linewidth=2,color="red")

In [6]: plt.title("Births trend")

⇐
Here we plot all the
data (with blue line)

⇐ See: np.polyfit

⇑
Here we plot the red line

↓↓↓↓↓↓

The plot aspect can be inter-
actively modified by means
of control buttons

←
The figure can be saved
to a file

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.polyfit.html

matplotlib - 3
hands on 2 - 16

matplotlib is well suited for ipython:
$ ipython --pylab
....
In [1]: %run births.py

In [2]: plt.plot(data[3])

In [3]: x = np.arange(len(data[3]))

In [4]: a,b = np.polyfit(x, data[3], 1)

In [5]: plt.plot((0, x[-1]),(b, a*x[-1]+b),linewidth=2,color="red")

In [6]: plt.title("Births trend")

⇐
Here we plot all the
data (with blue line)

⇐ See: np.polyfit

⇑
Here we plot the red line

↓↓↓↓↓↓

The plot aspect can be inter-
actively modified by means
of control buttons

←
The figure can be saved
to a file

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.polyfit.html

matplotlib - 3
hands on 2 - 16

matplotlib is well suited for ipython:
$ ipython --pylab
....
In [1]: %run births.py

In [2]: plt.plot(data[3])

In [3]: x = np.arange(len(data[3]))

In [4]: a,b = np.polyfit(x, data[3], 1)

In [5]: plt.plot((0, x[-1]),(b, a*x[-1]+b),linewidth=2,color="red")

In [6]: plt.title("Births trend")

⇐
Here we plot all the
data (with blue line)

⇐ See: np.polyfit

⇑
Here we plot the red line

↓↓↓↓↓↓

The plot aspect can be inter-
actively modified by means
of control buttons

←
The figure can be saved
to a file

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

file:///usr/share/doc/python-numpy-doc/html/reference/generated/numpy.polyfit.html

matplotlib - 3
package: matplotlib - 17

Some examples:

Point plotting
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> a = np.linspace(0,10,100)
>>> b = np.exp(-a)
>>> plt.plot(a,b,".")
>>> plt.show()

Histogram
>>> from numpy.random import normal
>>> x = normal(size=200)
>>> plt.hist(x,bins=30)
>>> plt.show()

Scatter plot
>>> from numpy.random import rand
>>> a = rand(100)
>>> b = rand(100)
>>> plt.scatter(a,b)
>>> plt.show()

3D surface
>>> from matplotlib import cm
>>> from mpl_toolkits.mplot3d import Axes3D
>>> fig = plt.figure()
>>> ax = fig.gca(projection="3d")
>>> X = np.arange(-5, 5, 0.25)
>>> Y = np.arange(-5, 5, 0.25)
>>> X, Y = np.meshgrid(X, Y)
>>> R = np.sqrt(X**2 + Y**2)
>>> Z = np.sin(R)
>>> surf = ax.plot_surface(X, Y, Z, rstride=1,

cstride=1, cmap=cm.coolwarm)
>>> plt.show()

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 3
package: matplotlib - 17

Some examples:

Point plotting
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> a = np.linspace(0,10,100)
>>> b = np.exp(-a)
>>> plt.plot(a,b,".")
>>> plt.show()

Histogram
>>> from numpy.random import normal
>>> x = normal(size=200)
>>> plt.hist(x,bins=30)
>>> plt.show()

Scatter plot
>>> from numpy.random import rand
>>> a = rand(100)
>>> b = rand(100)
>>> plt.scatter(a,b)
>>> plt.show()

3D surface
>>> from matplotlib import cm
>>> from mpl_toolkits.mplot3d import Axes3D
>>> fig = plt.figure()
>>> ax = fig.gca(projection="3d")
>>> X = np.arange(-5, 5, 0.25)
>>> Y = np.arange(-5, 5, 0.25)
>>> X, Y = np.meshgrid(X, Y)
>>> R = np.sqrt(X**2 + Y**2)
>>> Z = np.sin(R)
>>> surf = ax.plot_surface(X, Y, Z, rstride=1,

cstride=1, cmap=cm.coolwarm)
>>> plt.show()

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 3
package: matplotlib - 17

Some examples:

Point plotting
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> a = np.linspace(0,10,100)
>>> b = np.exp(-a)
>>> plt.plot(a,b,".")
>>> plt.show()

Histogram
>>> from numpy.random import normal
>>> x = normal(size=200)
>>> plt.hist(x,bins=30)
>>> plt.show()

Scatter plot
>>> from numpy.random import rand
>>> a = rand(100)
>>> b = rand(100)
>>> plt.scatter(a,b)
>>> plt.show()

3D surface
>>> from matplotlib import cm
>>> from mpl_toolkits.mplot3d import Axes3D
>>> fig = plt.figure()
>>> ax = fig.gca(projection="3d")
>>> X = np.arange(-5, 5, 0.25)
>>> Y = np.arange(-5, 5, 0.25)
>>> X, Y = np.meshgrid(X, Y)
>>> R = np.sqrt(X**2 + Y**2)
>>> Z = np.sin(R)
>>> surf = ax.plot_surface(X, Y, Z, rstride=1,

cstride=1, cmap=cm.coolwarm)
>>> plt.show()

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 3
package: matplotlib - 17

Some examples:

Point plotting
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> a = np.linspace(0,10,100)
>>> b = np.exp(-a)
>>> plt.plot(a,b,".")
>>> plt.show()

Histogram
>>> from numpy.random import normal
>>> x = normal(size=200)
>>> plt.hist(x,bins=30)
>>> plt.show()

Scatter plot
>>> from numpy.random import rand
>>> a = rand(100)
>>> b = rand(100)
>>> plt.scatter(a,b)
>>> plt.show()

3D surface
>>> from matplotlib import cm
>>> from mpl_toolkits.mplot3d import Axes3D
>>> fig = plt.figure()
>>> ax = fig.gca(projection="3d")
>>> X = np.arange(-5, 5, 0.25)
>>> Y = np.arange(-5, 5, 0.25)
>>> X, Y = np.meshgrid(X, Y)
>>> R = np.sqrt(X**2 + Y**2)
>>> Z = np.sin(R)
>>> surf = ax.plot_surface(X, Y, Z, rstride=1,

cstride=1, cmap=cm.coolwarm)
>>> plt.show()

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 3
package: matplotlib - 17

Some examples:

Point plotting
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> a = np.linspace(0,10,100)
>>> b = np.exp(-a)
>>> plt.plot(a,b,".")
>>> plt.show()

Histogram
>>> from numpy.random import normal
>>> x = normal(size=200)
>>> plt.hist(x,bins=30)
>>> plt.show()

Scatter plot
>>> from numpy.random import rand
>>> a = rand(100)
>>> b = rand(100)
>>> plt.scatter(a,b)
>>> plt.show()

3D surface
>>> from matplotlib import cm
>>> from mpl_toolkits.mplot3d import Axes3D
>>> fig = plt.figure()
>>> ax = fig.gca(projection="3d")
>>> X = np.arange(-5, 5, 0.25)
>>> Y = np.arange(-5, 5, 0.25)
>>> X, Y = np.meshgrid(X, Y)
>>> R = np.sqrt(X**2 + Y**2)
>>> Z = np.sin(R)
>>> surf = ax.plot_surface(X, Y, Z, rstride=1,

cstride=1, cmap=cm.coolwarm)
>>> plt.show()

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 4
hands on 3 - 18

We have a map of wind data (speed and direc-
tion) around LBTO at Mt. Graham, to be properly
plotted.

File: wind 2d.stat:
GRID SIZE X, GRID SIZE Y, START EXIT, END EXIT, EXIT NUM, MIN WIND, MAX WIND

100 100 4 10 7 1.4624E-02 5.78828
I J XLAT XLON ZS W.MOD. W.ANG. W.X (UT) W.Y(VT)
2 2 32.656 -109.941 1912.875 1.7029 62.383 -1.5089 -0.78941
2 3 32.657 -109.941 1916.125 1.5125 71.936 -1.4380 -0.46900
2 4 32.658 -109.941 1924.812 1.4617 76.891 -1.4236 -0.33153
2 5 32.659 -109.941 1935.500 1.4756 85.017 -1.4700 -0.12814
.......

File: plot wind 2d.py:
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt

DELTAX=0.1 # Spatial resolution
SYMX=51-1 # Center position, X
SYMY=51-1 # Center position, Y
filename="wind_2d.stat"

data = np.loadtxt(filename, skiprows=3, unpack=True)

ipoints = int(np.max(data[0])-np.min(data[0])+1)
jpoints = int(np.max(data[1])-np.min(data[1])+1)

ZS = data[4].reshape(ipoints, -1).transpose() # Convert into maps
WM = data[5].reshape(ipoints, -1).transpose()
WUT = data[7].reshape(ipoints, -1).transpose()
WVT = data[8].reshape(ipoints, -1).transpose()

arrayI = np.arange(0, ipoints)*DELTAX # Spatial scales
arrayJ = np.arange(0, jpoints)*DELTAX
maxI = np.max(arrayI)
maxJ = np.max(arrayJ)

⇓

Read data from file. Note:
→ skiprows
→ unpack

Convert data
columns into
2D arrays

X and Y axes

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 4
hands on 3 - 18

We have a map of wind data (speed and direc-
tion) around LBTO at Mt. Graham, to be properly
plotted.

File: wind 2d.stat:
GRID SIZE X, GRID SIZE Y, START EXIT, END EXIT, EXIT NUM, MIN WIND, MAX WIND

100 100 4 10 7 1.4624E-02 5.78828
I J XLAT XLON ZS W.MOD. W.ANG. W.X (UT) W.Y(VT)
2 2 32.656 -109.941 1912.875 1.7029 62.383 -1.5089 -0.78941
2 3 32.657 -109.941 1916.125 1.5125 71.936 -1.4380 -0.46900
2 4 32.658 -109.941 1924.812 1.4617 76.891 -1.4236 -0.33153
2 5 32.659 -109.941 1935.500 1.4756 85.017 -1.4700 -0.12814
.......

File: plot wind 2d.py:
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt

DELTAX=0.1 # Spatial resolution
SYMX=51-1 # Center position, X
SYMY=51-1 # Center position, Y
filename="wind_2d.stat"

data = np.loadtxt(filename, skiprows=3, unpack=True)

ipoints = int(np.max(data[0])-np.min(data[0])+1)
jpoints = int(np.max(data[1])-np.min(data[1])+1)

ZS = data[4].reshape(ipoints, -1).transpose() # Convert into maps
WM = data[5].reshape(ipoints, -1).transpose()
WUT = data[7].reshape(ipoints, -1).transpose()
WVT = data[8].reshape(ipoints, -1).transpose()

arrayI = np.arange(0, ipoints)*DELTAX # Spatial scales
arrayJ = np.arange(0, jpoints)*DELTAX
maxI = np.max(arrayI)
maxJ = np.max(arrayJ)

⇓

Read data from file. Note:
→ skiprows
→ unpack

Convert data
columns into
2D arrays

X and Y axes

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 4
hands on 3 - 18

We have a map of wind data (speed and direc-
tion) around LBTO at Mt. Graham, to be properly
plotted.

File: wind 2d.stat:
GRID SIZE X, GRID SIZE Y, START EXIT, END EXIT, EXIT NUM, MIN WIND, MAX WIND

100 100 4 10 7 1.4624E-02 5.78828
I J XLAT XLON ZS W.MOD. W.ANG. W.X (UT) W.Y(VT)
2 2 32.656 -109.941 1912.875 1.7029 62.383 -1.5089 -0.78941
2 3 32.657 -109.941 1916.125 1.5125 71.936 -1.4380 -0.46900
2 4 32.658 -109.941 1924.812 1.4617 76.891 -1.4236 -0.33153
2 5 32.659 -109.941 1935.500 1.4756 85.017 -1.4700 -0.12814
.......

File: plot wind 2d.py:
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt

DELTAX=0.1 # Spatial resolution
SYMX=51-1 # Center position, X
SYMY=51-1 # Center position, Y
filename="wind_2d.stat"

data = np.loadtxt(filename, skiprows=3, unpack=True)

ipoints = int(np.max(data[0])-np.min(data[0])+1)
jpoints = int(np.max(data[1])-np.min(data[1])+1)

ZS = data[4].reshape(ipoints, -1).transpose() # Convert into maps
WM = data[5].reshape(ipoints, -1).transpose()
WUT = data[7].reshape(ipoints, -1).transpose()
WVT = data[8].reshape(ipoints, -1).transpose()

arrayI = np.arange(0, ipoints)*DELTAX # Spatial scales
arrayJ = np.arange(0, jpoints)*DELTAX
maxI = np.max(arrayI)
maxJ = np.max(arrayJ)

⇓

Read data from file. Note:
→ skiprows
→ unpack

Convert data
columns into
2D arrays

X and Y axes

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 4
hands on 3 - 18

We have a map of wind data (speed and direc-
tion) around LBTO at Mt. Graham, to be properly
plotted.

File: wind 2d.stat:
GRID SIZE X, GRID SIZE Y, START EXIT, END EXIT, EXIT NUM, MIN WIND, MAX WIND

100 100 4 10 7 1.4624E-02 5.78828
I J XLAT XLON ZS W.MOD. W.ANG. W.X (UT) W.Y(VT)
2 2 32.656 -109.941 1912.875 1.7029 62.383 -1.5089 -0.78941
2 3 32.657 -109.941 1916.125 1.5125 71.936 -1.4380 -0.46900
2 4 32.658 -109.941 1924.812 1.4617 76.891 -1.4236 -0.33153
2 5 32.659 -109.941 1935.500 1.4756 85.017 -1.4700 -0.12814
.......

File: plot wind 2d.py:
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt

DELTAX=0.1 # Spatial resolution
SYMX=51-1 # Center position, X
SYMY=51-1 # Center position, Y
filename="wind_2d.stat"

data = np.loadtxt(filename, skiprows=3, unpack=True)

ipoints = int(np.max(data[0])-np.min(data[0])+1)
jpoints = int(np.max(data[1])-np.min(data[1])+1)

ZS = data[4].reshape(ipoints, -1).transpose() # Convert into maps
WM = data[5].reshape(ipoints, -1).transpose()
WUT = data[7].reshape(ipoints, -1).transpose()
WVT = data[8].reshape(ipoints, -1).transpose()

arrayI = np.arange(0, ipoints)*DELTAX # Spatial scales
arrayJ = np.arange(0, jpoints)*DELTAX
maxI = np.max(arrayI)
maxJ = np.max(arrayJ)

⇓

Read data from file. Note:
→ skiprows
→ unpack

Convert data
columns into
2D arrays

X and Y axes

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 4
hands on 3 - 18

We have a map of wind data (speed and direc-
tion) around LBTO at Mt. Graham, to be properly
plotted.

File: wind 2d.stat:
GRID SIZE X, GRID SIZE Y, START EXIT, END EXIT, EXIT NUM, MIN WIND, MAX WIND

100 100 4 10 7 1.4624E-02 5.78828
I J XLAT XLON ZS W.MOD. W.ANG. W.X (UT) W.Y(VT)
2 2 32.656 -109.941 1912.875 1.7029 62.383 -1.5089 -0.78941
2 3 32.657 -109.941 1916.125 1.5125 71.936 -1.4380 -0.46900
2 4 32.658 -109.941 1924.812 1.4617 76.891 -1.4236 -0.33153
2 5 32.659 -109.941 1935.500 1.4756 85.017 -1.4700 -0.12814
.......

File: plot wind 2d.py:
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt

DELTAX=0.1 # Spatial resolution
SYMX=51-1 # Center position, X
SYMY=51-1 # Center position, Y
filename="wind_2d.stat"

data = np.loadtxt(filename, skiprows=3, unpack=True)

ipoints = int(np.max(data[0])-np.min(data[0])+1)
jpoints = int(np.max(data[1])-np.min(data[1])+1)

ZS = data[4].reshape(ipoints, -1).transpose() # Convert into maps
WM = data[5].reshape(ipoints, -1).transpose()
WUT = data[7].reshape(ipoints, -1).transpose()
WVT = data[8].reshape(ipoints, -1).transpose()

arrayI = np.arange(0, ipoints)*DELTAX # Spatial scales
arrayJ = np.arange(0, jpoints)*DELTAX
maxI = np.max(arrayI)
maxJ = np.max(arrayJ)

⇓

Read data from file. Note:
→ skiprows
→ unpack

Convert data
columns into
2D arrays

X and Y axes

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 5
hands on 3 - 19

File: plot wind 2d.py - contd.:
im = plt.imshow(WM, interpolation=’bilinear’, origin=’lower’, # Show image

extent=[0, maxI, 0, maxJ], cmap=cm.hot_r)

cbar = plt.colorbar(im, orientation=’vertical’)
cbar.set_label("Wind speed (m/s)")

maxzs = np.max(ZS)
minzs = np.min(ZS)
levels = np.linspace(minzs, maxzs, 25) # Set contour levels

plt.contour(arrayI,arrayJ,ZS,levels,colors=’k’,origin=’lower’,linewidths=0.5)

plt.plot([arrayI[SYMX]],[arrayJ[SYMY]],"o",color=’black’, ms=8)

plt.quiver(arrayI[::5],arrayJ[::5],WUT[::5,::5],WVT[::5,::5], # Arrows
headwidth=6,headlength=6)

plt.title("Wind speed - hour 007 or hour 000 MST")
plt.xlabel(’Km’)
plt.ylabel(’Km’)
plt.tight_layout()
plt.show()
plotfile = ’wind_speed.png’
plt.savefig(plotfile, dpi=200)
print("Created file:", plotfile)

⇐

Show the image. Note:
→ interpolation
→ origin
→ extent
→ cmap

⇐ Add the colorbar at a
side of image

⇐
Set the desired levels for
contours

⇐ Plot the contours

⇐ Plot the arrows

⇐

Save the image onto
a file, with desired
quality

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 5
hands on 3 - 19

File: plot wind 2d.py - contd.:
im = plt.imshow(WM, interpolation=’bilinear’, origin=’lower’, # Show image

extent=[0, maxI, 0, maxJ], cmap=cm.hot_r)

cbar = plt.colorbar(im, orientation=’vertical’)
cbar.set_label("Wind speed (m/s)")

maxzs = np.max(ZS)
minzs = np.min(ZS)
levels = np.linspace(minzs, maxzs, 25) # Set contour levels

plt.contour(arrayI,arrayJ,ZS,levels,colors=’k’,origin=’lower’,linewidths=0.5)

plt.plot([arrayI[SYMX]],[arrayJ[SYMY]],"o",color=’black’, ms=8)

plt.quiver(arrayI[::5],arrayJ[::5],WUT[::5,::5],WVT[::5,::5], # Arrows
headwidth=6,headlength=6)

plt.title("Wind speed - hour 007 or hour 000 MST")
plt.xlabel(’Km’)
plt.ylabel(’Km’)
plt.tight_layout()
plt.show()
plotfile = ’wind_speed.png’
plt.savefig(plotfile, dpi=200)
print("Created file:", plotfile)

⇐

Show the image. Note:
→ interpolation
→ origin
→ extent
→ cmap

⇐ Add the colorbar at a
side of image

⇐
Set the desired levels for
contours

⇐ Plot the contours

⇐ Plot the arrows

⇐

Save the image onto
a file, with desired
quality

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 5
hands on 3 - 19

File: plot wind 2d.py - contd.:
im = plt.imshow(WM, interpolation=’bilinear’, origin=’lower’, # Show image

extent=[0, maxI, 0, maxJ], cmap=cm.hot_r)

cbar = plt.colorbar(im, orientation=’vertical’)
cbar.set_label("Wind speed (m/s)")

maxzs = np.max(ZS)
minzs = np.min(ZS)
levels = np.linspace(minzs, maxzs, 25) # Set contour levels

plt.contour(arrayI,arrayJ,ZS,levels,colors=’k’,origin=’lower’,linewidths=0.5)

plt.plot([arrayI[SYMX]],[arrayJ[SYMY]],"o",color=’black’, ms=8)

plt.quiver(arrayI[::5],arrayJ[::5],WUT[::5,::5],WVT[::5,::5], # Arrows
headwidth=6,headlength=6)

plt.title("Wind speed - hour 007 or hour 000 MST")
plt.xlabel(’Km’)
plt.ylabel(’Km’)
plt.tight_layout()
plt.show()
plotfile = ’wind_speed.png’
plt.savefig(plotfile, dpi=200)
print("Created file:", plotfile)

⇐

Show the image. Note:
→ interpolation
→ origin
→ extent
→ cmap

⇐ Add the colorbar at a
side of image

⇐
Set the desired levels for
contours

⇐ Plot the contours

⇐ Plot the arrows

⇐

Save the image onto
a file, with desired
quality

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 5
hands on 3 - 19

File: plot wind 2d.py - contd.:
im = plt.imshow(WM, interpolation=’bilinear’, origin=’lower’, # Show image

extent=[0, maxI, 0, maxJ], cmap=cm.hot_r)

cbar = plt.colorbar(im, orientation=’vertical’)
cbar.set_label("Wind speed (m/s)")

maxzs = np.max(ZS)
minzs = np.min(ZS)
levels = np.linspace(minzs, maxzs, 25) # Set contour levels

plt.contour(arrayI,arrayJ,ZS,levels,colors=’k’,origin=’lower’,linewidths=0.5)

plt.plot([arrayI[SYMX]],[arrayJ[SYMY]],"o",color=’black’, ms=8)

plt.quiver(arrayI[::5],arrayJ[::5],WUT[::5,::5],WVT[::5,::5], # Arrows
headwidth=6,headlength=6)

plt.title("Wind speed - hour 007 or hour 000 MST")
plt.xlabel(’Km’)
plt.ylabel(’Km’)
plt.tight_layout()
plt.show()
plotfile = ’wind_speed.png’
plt.savefig(plotfile, dpi=200)
print("Created file:", plotfile)

⇐

Show the image. Note:
→ interpolation
→ origin
→ extent
→ cmap

⇐ Add the colorbar at a
side of image

⇐
Set the desired levels for
contours

⇐ Plot the contours

⇐ Plot the arrows

⇐

Save the image onto
a file, with desired
quality

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 5
hands on 3 - 19

File: plot wind 2d.py - contd.:
im = plt.imshow(WM, interpolation=’bilinear’, origin=’lower’, # Show image

extent=[0, maxI, 0, maxJ], cmap=cm.hot_r)

cbar = plt.colorbar(im, orientation=’vertical’)
cbar.set_label("Wind speed (m/s)")

maxzs = np.max(ZS)
minzs = np.min(ZS)
levels = np.linspace(minzs, maxzs, 25) # Set contour levels

plt.contour(arrayI,arrayJ,ZS,levels,colors=’k’,origin=’lower’,linewidths=0.5)

plt.plot([arrayI[SYMX]],[arrayJ[SYMY]],"o",color=’black’, ms=8)

plt.quiver(arrayI[::5],arrayJ[::5],WUT[::5,::5],WVT[::5,::5], # Arrows
headwidth=6,headlength=6)

plt.title("Wind speed - hour 007 or hour 000 MST")
plt.xlabel(’Km’)
plt.ylabel(’Km’)
plt.tight_layout()
plt.show()
plotfile = ’wind_speed.png’
plt.savefig(plotfile, dpi=200)
print("Created file:", plotfile)

⇐

Show the image. Note:
→ interpolation
→ origin
→ extent
→ cmap

⇐ Add the colorbar at a
side of image

⇐
Set the desired levels for
contours

⇐ Plot the contours

⇐ Plot the arrows

⇐

Save the image onto
a file, with desired
quality

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 5
hands on 3 - 19

File: plot wind 2d.py - contd.:
im = plt.imshow(WM, interpolation=’bilinear’, origin=’lower’, # Show image

extent=[0, maxI, 0, maxJ], cmap=cm.hot_r)

cbar = plt.colorbar(im, orientation=’vertical’)
cbar.set_label("Wind speed (m/s)")

maxzs = np.max(ZS)
minzs = np.min(ZS)
levels = np.linspace(minzs, maxzs, 25) # Set contour levels

plt.contour(arrayI,arrayJ,ZS,levels,colors=’k’,origin=’lower’,linewidths=0.5)

plt.plot([arrayI[SYMX]],[arrayJ[SYMY]],"o",color=’black’, ms=8)

plt.quiver(arrayI[::5],arrayJ[::5],WUT[::5,::5],WVT[::5,::5], # Arrows
headwidth=6,headlength=6)

plt.title("Wind speed - hour 007 or hour 000 MST")
plt.xlabel(’Km’)
plt.ylabel(’Km’)
plt.tight_layout()
plt.show()
plotfile = ’wind_speed.png’
plt.savefig(plotfile, dpi=200)
print("Created file:", plotfile)

⇐

Show the image. Note:
→ interpolation
→ origin
→ extent
→ cmap

⇐ Add the colorbar at a
side of image

⇐
Set the desired levels for
contours

⇐ Plot the contours

⇐ Plot the arrows

⇐

Save the image onto
a file, with desired
quality

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 5
hands on 3 - 19

File: plot wind 2d.py - contd.:
im = plt.imshow(WM, interpolation=’bilinear’, origin=’lower’, # Show image

extent=[0, maxI, 0, maxJ], cmap=cm.hot_r)

cbar = plt.colorbar(im, orientation=’vertical’)
cbar.set_label("Wind speed (m/s)")

maxzs = np.max(ZS)
minzs = np.min(ZS)
levels = np.linspace(minzs, maxzs, 25) # Set contour levels

plt.contour(arrayI,arrayJ,ZS,levels,colors=’k’,origin=’lower’,linewidths=0.5)

plt.plot([arrayI[SYMX]],[arrayJ[SYMY]],"o",color=’black’, ms=8)

plt.quiver(arrayI[::5],arrayJ[::5],WUT[::5,::5],WVT[::5,::5], # Arrows
headwidth=6,headlength=6)

plt.title("Wind speed - hour 007 or hour 000 MST")
plt.xlabel(’Km’)
plt.ylabel(’Km’)
plt.tight_layout()
plt.show()
plotfile = ’wind_speed.png’
plt.savefig(plotfile, dpi=200)
print("Created file:", plotfile)

⇐

Show the image. Note:
→ interpolation
→ origin
→ extent
→ cmap

⇐ Add the colorbar at a
side of image

⇐
Set the desired levels for
contours

⇐ Plot the contours

⇐ Plot the arrows

⇐

Save the image onto
a file, with desired
quality

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

matplotlib - 5
hands on 3 - 19

File: plot wind 2d.py - contd.:
im = plt.imshow(WM, interpolation=’bilinear’, origin=’lower’, # Show image

extent=[0, maxI, 0, maxJ], cmap=cm.hot_r)

cbar = plt.colorbar(im, orientation=’vertical’)
cbar.set_label("Wind speed (m/s)")

maxzs = np.max(ZS)
minzs = np.min(ZS)
levels = np.linspace(minzs, maxzs, 25) # Set contour levels

plt.contour(arrayI,arrayJ,ZS,levels,colors=’k’,origin=’lower’,linewidths=0.5)

plt.plot([arrayI[SYMX]],[arrayJ[SYMY]],"o",color=’black’, ms=8)

plt.quiver(arrayI[::5],arrayJ[::5],WUT[::5,::5],WVT[::5,::5], # Arrows
headwidth=6,headlength=6)

plt.title("Wind speed - hour 007 or hour 000 MST")
plt.xlabel(’Km’)
plt.ylabel(’Km’)
plt.tight_layout()
plt.show()
plotfile = ’wind_speed.png’
plt.savefig(plotfile, dpi=200)
print("Created file:", plotfile)

⇐

Show the image. Note:
→ interpolation
→ origin
→ extent
→ cmap

⇐ Add the colorbar at a
side of image

⇐
Set the desired levels for
contours

⇐ Plot the contours

⇐ Plot the arrows

⇐

Save the image onto
a file, with desired
quality

Advanced Python for Astronomy. II - ipython/numpy/matplotlib - L. Fini September 2018

