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Bayesian Renaissance in Astronomy

The use of Statistical Methods in general and
Bayesian Methods in particular is growing

exponentially in Astronomy.

Source: http://magazine.amstat.org/blog/2013/12/01/science-policy-intel/
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Why Use Bayesian Methods?

Advantages of Bayesian methods:
Directly model complexities of sources and instruments.
Allows science-driven modeling. (Not just predictive modeling.)

Combine multiple information sources and/or data streams.
Allow hierarchical or multi-level structures in data/models.
Bayesian methods have clear mathematical foundations
and can be used to derive principled statistical methods.
Sophisticated computational methods available.

Challenges:
Require us to specify “prior distributions” on unknown
model parameters.

David A. van Dyk Bayesian Astrostatistics: Part I



uci

Foundations of Bayesian Data Analysis
Further Topics with Univariate Parameter Models

Outline of Topics

1 BACKGROUND: Motivation; modern Bayesian tools; comparisons
with likelihood methods; evaluating an estimator.

2 BASIC MODELS: Poisson, binomial, and normal models;
conjugate, informative, non-informative, and Jeffries prior
distributions; summarizing posterior inference; the posterior as
an average of the prior and data; nuisance parameters.

3 MODEL FITTING: (Markov chain) Monte Carlo Methods,
convergence detection, data augmentation

4 HIERARCHICAL MODELS: Random-effects models and
shrinkage; Multilevel models; Examples: selection effects,
spectral and image analysis in high-energy astrophysics.

5 MODEL CHECKING, SELECTION, AND IMPROVEMENT: Posterior
predictive checks, Bayes factors, comparisons with significance
tests and p-values.
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Outline

1 Foundations of Bayesian Data Analysis
Probability
Bayesian Analysis of Standard Poisson Model
Building Blocks of Modern Bayesian Analyses

2 Further Topics with Univariate Parameter Models
Bayesian Analysis of Standard Binomial Model
Transformations
Prior Distributions
Comparisons with Frequency Based Methods
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Rolling Dice

Suppose we roll two dice:

Let S be the set of possible outcomes.
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Mathematical Definition of Probability

Definition
(Kolmogorov Axioms) A probability function is a function such
that

i) Pr(A) ≥ 0, for all subsets of S.
ii) Pr(S) = 1.
iii) For any pair of disjoint subsets, A1 and A2, of S,

Pr(A1 or A2) = Pr(A1) + Pr(A2).a

a(Countable additivity) More generally, if A1,A2, . . . are pairwise disjoint
subsets of S then Pr

(⋃∞
i=1 Ai

)
=
∑∞

i=1 Pr(Ai).

But what does this this mean in real
applications? How do we interpret a probability?

David A. van Dyk Bayesian Astrostatistics: Part I



uci

Foundations of Bayesian Data Analysis
Further Topics with Univariate Parameter Models

Probability
Bayesian Analysis of Standard Poisson Model
Building Blocks of Modern Bayesian Analyses

Defining Probability

What do we mean by:

Pr(Roll two dice and get doubles) =

Pr(Rain today) =

Pr (catch a train departing King’s Cross in 40 minutes) =

π(T ) = Pr (catch train leaving in 40 min if I leave at time T ) =

How should we define “probability”?

Frequency-based definition.
Subjective definition.
Advantages and Difficulties of each.
Is there a right or a wrong definition?
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The Calculus of Probability

I assume you are familiar with:
Probability density and mass functions, e.g.,

Pr(a < X < b) =
∫ b

a pX (x)dx or Pr(a ≤ X ≤ b) =
∑b

x=a pX (x)∫∞
−∞ p(x)dx = 1

Joint probability functions, e.g.,
Pr(a < X < b and Y > c) =

∫ b
a

∫∞
c pXY (x , y)dydx

pX (x) =
∫∞
−∞ pXY (x , y)dy

Conditional probability functions, e.g.,
pY (y |x) = pXY (x , y)/pX (x)
pXY (x , y) = pX (x)pY (y |x)

When it is clear from context, we omit the
subscripts: p(x) = pX (x).
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Bayes Theorem

Bayes Theorem allows us to reverse a conditional probability:

Theorem
Bayes Theorem:

pY (y |x) =
pX (x |y)pY (y)

pX (x)
∝ pX (x |y)pY (y)

Bayes Theorem follows from applying the definition of
conditional probability twice:

pY (y |x) =
pXY (x , y)

pX (x)
=

pX (x |y)pY (y)

pX (x)
∝ pX (x |y)pY (y)

The denominator does note depend on y and is thus can
be viewed as a normalizing constant. Advantage?
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A Poisson Model

Consider a Poisson model for a photon counting detector.
Simplest case: single-bin detector

Y dist∼ POISSON(λSτ).

(τ is the observation time in seconds and λS is expected counts/sec.)
The sampling distribution is the probability function of data:

pY (y |λS) =
e−λSτ (λSτ)y

y !
.

Definition
The likelihood function is the sampling distribution viewed as a
function of the parameter. Constant factors may be omitted.
The maximum likelihood estimator (MLE) is the value of the
parameter that maximizes the likelihood.
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Likelihood for Poisson Model
Likelihood Function: For a single-bin detector,

likelihood(λS) =
e−λSτ (λSτ)y

y !
loglikelihood(λS) = −λSτ+y log(λS)

Maximum Likelihood Estimation: Suppose y = 3 with τ = 1
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The likelihood
and its normal
approximation.

MLE: λ̂S =
y
τ

Can estimate λS and its error bars.
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Data-Appropriate Models and Methods

Many methods based on χ2 or Gaussian assumptions.
Bayesian/Likelihood methods easily incorporate more
appropriate distributions.
E.g., for count data, we use a Poisson likelihood:

χ2 fitting: −
∑
bins

(yi − λi)
2

σ2
i

Gaussian Loglikelihood: −
∑
bins

σi −
∑
bins

(yi − λi)
2

σ2
i

Poisson Loglikelihood: −
∑
bins

λi +
∑
bins

yi logλi
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A Prior Distribution for Poisson Model

Definition
The prior distribution quantifies knowledge regarding
parameters obtained prior to the current observation.

The gamma distribution is a flexible family of prior dist’ns:

p(λS) = βα

Γ(α)λ
α−1
S e−βλS

for λS > 0.

E(λS) = α/β

Var(λS) = α/β2

0 2 4 6 8 10 120.
00

0.
10

0.
20

0.
30

lambda

pr
io
r

0 2 4 6 8 10 120.
00

0.
10

0.
20

lambda

po
st
er
io
r

David A. van Dyk Bayesian Astrostatistics: Part I



uci

Foundations of Bayesian Data Analysis
Further Topics with Univariate Parameter Models

Probability
Bayesian Analysis of Standard Poisson Model
Building Blocks of Modern Bayesian Analyses

The Posterior Distribution for Poisson Model

Definition
The posterior distribution quantifies combined knowledge for
parameters obtained prior to and with the current observation.

Bayes Theorem and the Posterior Distribution:

p(λS|y) = p(y |λS)p(λS)/p(y)

posterior(λS|y) ∝ likelihood(λS|y)× p(λS)

∝ (λSτ)y e−λSτ

y !
× βα

Γ(α)
λα−1

S e−βλS

∝ λy
Se−λSτ × λα−1

S e−βλS

∝ λy+α+1
S e−(τ+β)λS

So:
λS|y ∼ GAMMA(y + α, β + τ)
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The Posterior Distribution for Poisson Model

The posterior dist’n combines past and current information:
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Bayesian analyses rely on probability theory.
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Summary: Bayesian Analysis of Poisson Model

Definition
If the prior and the posterior distributions are of the same family, the
prior dist’n is called that likelihood’s conjugate prior distribution.

If Y |λS
dist∼ POISSON(λSτ) and λS

dist∼ GAMMA(α, β)

then λS |Y
dist∼ GAMMA(y + α, τ + β).

Conjugate prior distributions simplify computation!

Using formulae for the Gamma distribution:

A Bayesian estimator of λS: E(λS|y) =
y + α

τ + β

A Bayesian error bar:
√

Var(λS|Y ) =

√
y + α

τ + β
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“Prior Data”

Compare the MLE and the posterior expectation of λS:

MLE(λS) =
y
τ

E(λS|y) =
y + α

τ + β

The prior distribution has as much influence as
α observed events in an exposure of β seconds.
We can use this formulation of the prior in terms of
“prior data” to

meaningfully specify the prior distribution for λS and
limit the influence of the prior distribution.
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Model Specification

The first step in a Bayesian analysis is specifying the
statistical model

This consists of specification of
the prior distribution
the likelihood function

Both of these involves subjective choices
Comprehensive description can be overly complex.
Parsimony: simple w/out compromising scientific objectives.
What is a model?
What do we model? Or consider fixed?
(E.g., calibration, preprocessing, selection, etc.)

All models are wrong, but some are useful.
—George Box
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Multilevel (and Hierarchical) Models

Example: Background contamination in a single bin detector

Contaminated source counts: y = yS + yB

Background counts: x
Background exposure is 24 times source exposure.

A Poisson Multi-Level Model:
LEVEL 1: y |yB, λS

dist∼ Poisson(λS) + yB,

LEVEL 2: yB|λB
dist∼ Pois(λB) and x |λB

dist∼ Pois(λB · 24),
LEVEL 3: specify a prior distribution for λB, λS.

Each level of the model specifies a dist’n given unobserved
quantities whose dist’ns are given in lower levels.
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Bayesian Statistical Summaries

1 The full statistical summary: the posterior distribution.
2 But researchers would like summaries:

A parameter estimate: The posterior mean.
An error bar: The posterior standard deviation.

But is the enough??
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Posterior Intervals or Regions
For non-Gaussian posterior dist’ns, we find L and U so that

Pr(L < θ < U|y) =

∫ U

L
p(θ|y)dθ = 68% or 95% or . . .

or more generally, Θ so that

Pr(θ ∈ Θ|y) =

∫
θ∈Θ

p(θ|y)dθ = 68% or 95% or . . .

But the choice is not unique! Are there optimal choices?
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Choice of Posterior Intervals

The Equal-Tailed Interval

θ

p(
θ)

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

area = 90%
shaded

tail areas
both = 5%

The simplest interval to compute (e.g., via Monte Carlo).
Preserved under monotonic transformations.

E.g., If (Lθ,Uθ) is a 95% equal-tailed interval for θ,
then

(
log(Lθ), log(Uθ)

)
is a 95% equal-tailedinterval for log(θ)
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Choice of Posterior Intervals (con’t)

The Highest Posterior Density (HPD) Interval
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As λ decrease, probability (γ) of interval ((λ)) increases.
HPD interval is shortest interval of a given probability.
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Choice of Posterior Intervals (con’t)

Equal-tailed and HPD intervals for a skewed gamma dist’n:
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The difference is more pronounced for more
extreme distributions!
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Choice of Posterior Intervals (con’t)

For a multimodal posterior, HPD may not be an interval! 1
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1See Park, van Dyk, and Siemiginowska (2008). Searching for Narrow Emission
Lines in X-ray Spectra: Computation and Methods. ApJ, 688, 807–825.
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Predictive Distribuitons

The Prior Predictive Distribution: Let yrep be new data.

p(yrep) =

∫
p(θ, yrep)dθ =

∫
pY (yrep|θ)p(θ)dθ

Primarily used for model comparison.
Also called the marginal distribution of the data.

The Posterior Predictive Distribution:

p(yrep|y) =

∫
p(yrep, θ|y)dθ =

∫
p(yrep|θ, y)p(θ|y)dθ =

∫
p(yrep|θ)p(θ|y)dθ

Used for prediction (and model validation).
We assume ỹ and y are independent given θ.
Compare predictive dist’ns in terms of Monte Carlo sample.
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Benefits of Mathematical Foundation

Once we have established p(y |θ) and p(θ),
everything follows from basic probability theory.

EXAMPLE: Full accounting of uncertainty.
Let yi = α + βxi + ei , and ei ∼ NORM(0, σ2) for i = 1, . . . ,n.

New data: y rep = α + βxrep + erep

Prediction: ŷrep = α̂ + β̂xrep.
Two sources of error

α̂ and β̂ are only estimates.
residuals: erep ∼ NORM(0, σ2)

Posterior predictive distribution
automatically incorporates both.

x
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Benefits of Mathematical Foundation (con’t)

EXAMPLE: The Posterior Odds.

p(θ1|y)

p(θ2|y)
=

p(y |θ1)p(θ1)/p(y)

p(y |θ2)p(θ2)/p(y)
=

p(y |θ1)

p(y |θ2)
× p(θ1)

p(θ2)

= likelihood ratio × prior odds .

1 Used to compare two parameter values of interest.
2 Geneses of Bayesian methods for model comparison.
3 No new methods required, just standard probability

calculations.
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Nuissance Parameters

Summarizing the posterior distribution:
We can plot the contours of the posterior distribution.
Plot the marginal distributions of the parameters of interest:

p(λS | y , yB) =

∫
p(λS, λB | y , yB)dλB
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Markov Chain Monte Carlo

Exploring the posterior distribution via Monte Carlo.
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Easily generalizes to higher dimensions.
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Bayesian Data Analysis: The Big Picture

Specify(the(
sta-s-cal(model:(
prior(&(likelihood(

Condi-on(on(the(
observed(data.(
(e.g.,(MCMC)(

Model(diagnos-cs:(
check(model(
assump-ons.(

Statisticians: Model checking and model improvement.
Scientists: Model comparison and model selection.

But remember....

All models are wrong, but some are useful.
—George Box
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Bayesian Analysis of Standard Binomial Model

EXAMPLE: Hardness Ratios in High Energy Astrophysics2

Let
H ∼ POISSON(λH) be the observed hard count.
S ∼ POISSON(λS) be the observed soft count.
n = H + S be the total count.

If H and S are independent,

H|n ∼ BINOMIAL

(
n, π =

λH

λH + λS

)
We will conduct a Bayesian Analysis of this model,

treating π as the unknown parameter.
2For more on Bayesian analysis of Hardness Ratios see Park et al. (2006).

Hardness Ratios with Poisson Errors: Modeling and Computations. ApJ, 652, 610–628.
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Details of Binomial Analysis

Likelihood:

pH(h|π) =
n!

h!(n − h)!
πh(1− π)n−h for h = 0,1, . . . ,n

Beta prior distribution:

p(π) =
Γ(α + β)

Γ(α)Γ(β)
πα−1(1− π)β−1 for 0 < π < 1

where α and β are hyper parameters, which define prior dist’n.

The beta family is a flexible class of prior
distributions on the unit interval.
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Beta Distributions: A Flexible Class of Priors
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Beta Dist’n is Conjugate to the Binomial

If H|n, π dist∼ BINOMIAL(n, π) and π dist∼ BETA(α, β)

then π|H,n dist∼ BETA(h + α,n − h + β).

Suppressing the conditioning on n,

p(π|h) ∝ p(h|π) p(π)

=
n!

h!(n − h)!
πh(1− π)n−h × Γ(α + β)

Γ(α)Γ(β)
πα−1(1− π)β−1

∝ πh+α−1(1− π)n−h+β−1,

which is proportional to a BETA(h + α,n − h + β) density.
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Beta Dist’n is Conjugate to the Binomial

If H|n, π dist∼ BINOMIAL(n, π) and π dist∼ BETA(α, β)

then π|H,n dist∼ BETA(h + α,n − h + β).

NOTE:

The posterior distribution is an “average” of the
data/likelihood and the prior distribution.
We can interpret the hyperparameters α and β as “prior
hard and soft counts”.
As n increases, choice of prior matters less.
Point estimate for π:

E(π|h) =
h + α

n + α + β

But be cautious of summarizing a dist’n with its mean!
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Sample R code

# set (flat) prior
> alpha <- 1
> beta <- 1
>
> # set data
> hard <- 1
> soft <- 3
>
> # Monte Carlo sample of posterior
> post.sample.pi <- rbeta(1000, hard + alpha, soft +beta)
>
> estimate <- mean(post.sample.pi)
> error.bar <- sd(post.sample.pi)
> lower <- sort(post.sample.pi)[25]
> upper <-sort(post.sample.pi)[975]
>
> hist(post.sample.pi, xlab =expression(pi), main="")
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Sample R output

> estimate

0.3237472

> error.bar

0.1719679

> lower

0.05146435

> upper

0.6926952
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Two 95% intervals
estimate ± 2× error bars: (−0.02,0.66)

equil-tail: (0.05,0.69)

Why the difference?
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Parameterization of Hardness Ratio

We have formulated our analysis of Hardness ratios in terms of

π =
λH

λH + λS
.

Other formulations are more common:

simple ratio: R =
λS

λH
=

1− π
π

color: C = log10

(
λS

λH

)
= log10(1−π)− log10(π)

fractional difference: HR =
λH − λS

λH + λS
= 2π − 1

Transformations of scale and/or parameter are common.
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Parameterization of Hardness Ratio

With an MC sample from posterior, transformations are trivial:
# Monte Carlo sample of posterior of transformed parameters
> post.sample.ratio <- (1-post.sample.pi)/post.sample.pi
> post.sample.color <- log10(post.sample.ratio)
> post.sample.diff <- 2*post.sample.pi - 1
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Parameterization of Hardness Ratio
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How will the equal tail intervals compare with that for π?
How will the HPD intervals compare?
How will the “estimate ± 2× error bar interval compare?
What transformation is “best” from a stats perspective?
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Interpreting prior distributions

Using hardness ratios for illustration,
1 POPULATION/FREQUENCY INTERPRETATION: Imagine a

population of sources, experiments, or universes from
which the current parameter is draw.

“This source is drawn from a population of sources.”
2 STATE OF KNOWLEDGE: A subjective probability dist’n.
3 LACK OF KNOWLEDGE: UNIFORM(0,1) corresponds to “no

prior information”. This choice of prior does draw E(π|h)
toward 1/2, but has relatively large prior variance.

We refer to “subjective” and ”objective” Bayesian methods
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Objective Bayesian Methods

Definition
A reference prior is a prior distribution than can be used as a matter
of course under a given likelihood. That is, once the likelihood is
specified the reference prior can be automatically applied.

Reference priors might be formulated to
1 minimize the information conveyed by the prior, or
2 optimize other statistical properties of estimators.

For example, we may find the prior that maximizes

Var(θ|y) (for all y and/or choice of θ??)

or yields confidence intervals with correct frequency coverage.
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Non-informative Prior Distributions

Definition
A non-informative prior is a prior that aims to play a minimal role in
the statistical inference.

Common choice: flat or uniform prior over range of parameter.

EXAMPLE: h | π ∼ BINOMIAL(n, π) with π ∼ UNIFORM(0,1).
What does this choice of prior correspond to for:

simple ratio: R =
λS

λH
=

1− π
π

color: C = log10

(
λS

λH

)
= log10(1− π)− log10(π)

fractional difference: HR =
λH − λS

λH + λS
= 2π − 1
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The Effect of Transformation on the Prior

R-code for an Monte Carlo study:
> prior.sample.pi <- runif(100000,0,1)
>
> # Monte Carlo sample of prior of transformed parameters
> prior.sample.ratio <- (1-prior.sample.pi)/prior.sample.pi
> prior.sample.color <- log10(prior.sample.ratio)
> prior.sample.diff <- 2*prior.sample.pi -1
>
> # Histograms
> pdf("hr-2.pdf", width=8, height=3)
> par(mfrow=c(1,4))
> hist(prior.sample.pi, xlab =expression(pi), main="")
> hist(prior.sample.ratio, xlab = "simple ratio", main="")
> hist(prior.sample.color, xlab = "color", main="")
> hist(prior.sample.diff, xlab = "frac difference", main="")
> dev.off()
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Effect of Transformation on the Prior (cont)
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While the idea of a “flat prior dist’n” seem sensible enough, it is
completely determined by the choice of parameter.
Color is a standard normalizing transformation in stats.3

Why not use flat prior on ψ = color: p(ψ) ∝ 1 for −∞ < ψ <∞?

3But statisticians call ln(π/(1− π)) the log odds.
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Improper Prior Distributions

Definition
An improper prior distribution is a positive-valued function that
is not integrable, but that is used formally as a prior distribution.

NOTE:
Because improper priors are not distributions, we can not
rely on probability theory alone.
However, improper priors generally cause no problem so
long as we verify that the resulting posterior distribution is
a proper distribution.
If the posterior distribution is not proper, no sensible
conclusions can be drawn.
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Example of an Improper Prior Distribution

If H|n, π dist∼ BINOMIAL(n, π) and π dist∼ BETA(α, β)

then π|H,n dist∼ BETA(h + α,n − h + β).

The flat improper prior distribution on color:

p(φ) ∝ 1 for −∞ < φ <∞

corresponds to the (improper) distribution on π

π ∼ Beta(α = 0, β = 0).

The posterior distribution, however, is proper so long as
1 h ≥ 1 and
2 n − h ≥ 1.
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Jeffrey’s Invariance Principle

Question: Can we find an objective rule for generating priors
that does not depend on the choice of parameterization?

Definition
Jeffery’s invariance principle says that any rule for determining
a (non-informative) prior distribution should yield the same
result if applied to a transformation of the parameter.

NOTE: Any subjective prior distribution should adhere to
Jeffery’s invariance principle. (At least in principle.)
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Jeffrey’s Prior Distribution

In likelihood-based statistics, the Expected Fisher Information is

−J(θ) = E
[

d2 log p(y |θ)

d2θ

∣∣∣ θ]

Definition
The Jeffery’s prior distribution is

p(θ) ∝
√

J(θ)

or in higher dimensions,

p(θ) ∝
√
|J(θ)|.

David A. van Dyk Bayesian Astrostatistics: Part I



uci

Foundations of Bayesian Data Analysis
Further Topics with Univariate Parameter Models

Bayesian Analysis of Standard Binomial Model
Transformations
Prior Distributions
Comparisons with Frequency Based Methods

Example of Jeffrey’s Prior

Example: For the binomial model,

log(pH(h|π)) = h log(π) + (n − h) log(1− π) + constant .

and the expected Fisher information is

−E
[
− h
π2 −

n − h
(1− π)2

∣∣∣ π] =
n

π(1− π)
.

So the Jeffrey’s Prior is

p(π) ∝
√

J(π) ∝ π−1/2(1− π)−1/2 = BETA(α = 1/2, β = 1/2).

This prior is invariant, but is it non-informative??
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Prior/Likelihood Mismatch

If H|n, π dist∼ BINOMIAL(n, π) and π dist∼ BETA(α, β)

then π|H,n dist∼ BETA(h + α,n − h + β).

Consider larger dataset: n = 48 counts w/ h = 26 hard counts.

Prior I: π ∼ BETA(1,1) yields:
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Prior/Likelihood Mismatch (con’t)

Prior II: π ∼ BETA(1000,1):
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In this case Var(π|h) > Var(π).
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The Goal of Parameter Estimation

Set$of$Possible$
Parameter$Values$

Set$of$Possible$
Datasets$

Observed$dataset$

Es6mated$parameter$

Set$of$Possible$
Parameter$Values$

Set$of$Possible$
Datasets$

Observed$dataset$
All$parameter$

values$

Given the observed dataset:
Find the most likely or most probably value of parameter.
Find an estimate that is likely to be near the “true” value of
the parameter.
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Likelihood-based Inference
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Draws the arrows in the wrong direction:
For each value of the parameter how likely would the
observed data be?

Reversing the conditioning in a probabilistic
statement can be highly misleading!
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Justification for Likelihood-based Inference

Asymptotic frequency properties:
If you consider the data to be a random sample of possible
data sets, the MLE, θ̂mle is also random.
Because it is a random quantity, we can compute the
distribution, mean, and variance of θ̂mle.
If the size of the data is LARGE (asymptotic!), then

1 Mean of θ̂mle is near its true value (MLE is asy. unbiased).
2 Variance of θ̂mle decreases as sample size increases.
3 The distribution of θ̂mle is approximately Gaussian (MLE is

asymptotically Gaussian).
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Example of Asymptotic Behavior of MLE
> # Number of replicate data sets > N <- 1000
> exposure<-1000
>
> # Generate replicate data sets and compute mle’s
> data <- rpois(N, 0.5*exposure)
> mle <- data / exposure
>
> pdf("asy-1.pdf", width=4, height=4)
> par(mex=0.7)
> hist(mle, xlab = "mle", main="exposure = 1000s")
> lines(rep(0.5,2),c(0,106̂), col="blue")
> dev.off()
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Changing the Exposure
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The MLE works great for large samples.
But it has no direct justification in small sample settings.
Frequency properties must be derived case-by-case.
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What about Bayesian Methods?

Bayesian methods have the same asymptotic
properties as likelihood-based methods
(as long as prior has some probability around the true value).

In addition Bayesian methods
1 have probabilistic justification in small samples (w/out asymptotics),
2 can be justified in terms of small sample frequency

properties on a case-by-case basis,
3 are much easier to interpret using probability statements,
4 naturally allow for multiple sources of information.
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Choosing the Prior Distribution

Solance: Any reasonable prior distribution results in exactly the
same asymptotic frequency properties as likelihood methods.

Worry: Only if you want to do better than likelihood-based
methods in small samples.

Diligence: Nonetheless in practice much effort is put into
selecting priors that help us best achieve our objectives.

Advantage: The choice of prior is an additional degree of
freedom in methodological development.

Choice of prior can even improve frequency properties!
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Frequency Properties of Bayesian Methods

EXAMPLE: Suppose H ∼ BINOMIAL(n = 10, π).

Consider four estimates of π:
i) π̂1, the maximum likelihood estimator of π;
ii) π̂2 = E(π|Y ), where π has prior distribution π ∼ Beta(1,1)

iii) π̂3 = E(π|Y ), where π has prior distribution π ∼ Beta(1,4)

iv) π̂4 = E(π|Y ), where π has prior distribution π ∼ Beta(4,1)

and four 95% interval estimators of π,

π̂i ± 1.96

√
1
n
π̂i(1− π̂i) for i = 1, . . . ,4.
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Frequency Properties of Estimators and Intervals
Remember: If the data is a random sample of all possible data, the
estimator π̂i is also random. It has a distribution, mean, and variance.

We can evaluate the π̂i as an estimator of π in terms of its

bias: E(π̂i | π)− π (Is bias bad??)

variance: E
[(
π̂i − E(π̂i | π)

)2 | π
]

mean square error: E
[
(π̂i − π)2 | π

]
= bias2 + variance
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Results for n = 10:
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More results for n = 10
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Coverage is the probability that an interval contains the true value.
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Results for n = 3
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More results for n = 3
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Can we fit the prior to optimize frequency properties??
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Subjective vs. Objective Analysis

All statistical analyses are subjective. Choices of data,
parametric forms, statistical/scientifc models, “what to model”.

But Bayesian methods have one more subjective component,
the quantification of prior knowledge in through a distribution.

And prior distributions need’t be used in subjective manner.

Everything follows from basic probability theory once we have
established p(y |θ) and p(θ), Compare with likelihood theory.

Asymptotic results and counter intuitive definitions (e.g., for a
CI or a p-value) are not required.
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